Post

Created by @nathanedwards
 at November 2nd 2023, 12:06:06 am.

AP Calculus AB Exam Question:

Let f(x)=2x33x2+4f(x) = 2x^3 - 3x^2 + 4 be a function defined on the closed interval [0,2][0, 2]. The graph of f(x)f(x) is shown below:

Graph of f(x)

a) Find the average value of f(x)f(x) on the interval [0,2][0, 2].

b) Determine the x-coordinate(s) at which the average value of f(x)f(x) on the interval [0,x][0, x] is equal to 2.


Answer and Step-by-Step Explanation:

Part a)

To find the average value of f(x)f(x) on the interval [0,2][0, 2], we need to evaluate the definite integral of f(x)f(x) on this interval and divide the result by the width of the interval.

The average value of f(x)f(x) on [0,2][0, 2] is given by:

12002f(x)dx\frac{1}{2 - 0} \int_0^2 f(x) \,dx

Now, we can find the integral of f(x)f(x) by taking the antiderivative of each term individually:

022x3dx=[24x4]02=12241204=162=8\int_0^2 2x^3 \,dx = \left[\frac{2}{4}x^4\right]_0^2 = \frac{1}{2} \cdot 2^4 - \frac{1}{2} \cdot 0^4 = \frac{16}{2} = 8
023x2dx=[x3]02=23(03)=80=8\int_0^2 -3x^2 \,dx = \left[-x^3\right]_0^2 = -2^3 - (-0^3) = -8 - 0 = -8
024dx=[4x]02=4240=80=8\int_0^2 4 \,dx = \left[4x\right]_0^2 = 4 \cdot 2 - 4 \cdot 0 = 8 - 0 = 8

Now, we add up these integrals to get the overall integral:

02f(x)dx=02(2x33x2+4)dx=8+(8)+8=8\int_0^2 f(x) \,dx = \int_0^2 (2x^3 - 3x^2 + 4) \,dx = 8 + (-8) + 8 = 8

Finally, we divide this by the width of the interval (2 - 0 = 2):

12002f(x)dx=128=4\frac{1}{2 - 0} \int_0^2 f(x) \,dx = \frac{1}{2} \cdot 8 = \boxed{4}

Therefore, the average value of the function f(x)=2x33x2+4f(x) = 2x^3 - 3x^2 + 4 on the interval [0,2][0, 2] is 4.

Part b)

To determine the x-coordinate(s) at which the average value of f(x)f(x) on the interval [0,x][0, x] is equal to 2, we need to find the value(s) of xx that satisfy the following equation:

1x00xf(x)dx=2\frac{1}{x - 0} \int_0^x f(x) \,dx = 2

We already know that the integral of f(x)f(x) on the interval [0,x][0, x] is given by:

0xf(x)dx=0x(2x33x2+4)dx\int_0^x f(x) \,dx = \int_0^x (2x^3 - 3x^2 + 4) \,dx

To evaluate this integral, we perform similar steps as in Part a):

0x2x3dx=[24x4]0x=12x41204=12x4\int_0^x 2x^3 \,dx = \left[\frac{2}{4}x^4\right]_0^x = \frac{1}{2} x^4 - \frac{1}{2} \cdot 0^4 = \frac{1}{2}x^4
0x3x2dx=[x3]0x=x3(03)=x3\int_0^x -3x^2 \,dx = \left[-x^3\right]_0^x = - x^3 - (- 0^3) = -x^3
0x4dx=[4x]0x=4x40=4x\int_0^x 4 \,dx = \left[4x\right]_0^x = 4x - 4 \cdot 0 = 4x

Now, we add up these integrals:

0xf(x)dx=0x(2x33x2+4)dx=12x4x3+4x\int_0^x f(x) \,dx = \int_0^x (2x^3 - 3x^2 + 4) \,dx = \frac{1}{2}x^4 - x^3 + 4x

Substituting this back into the equation 1x00xf(x)dx=2\frac{1}{x - 0} \int_0^x f(x) \,dx = 2:

1x(12x4x3+4x)=2\frac{1}{x} \left(\frac{1}{2}x^4 - x^3 + 4x\right) = 2

Simplifying:

12x3x2+4=2x\frac{1}{2}x^3 - x^2 + 4 = 2x

Rearranging to get a quadratic equation:

12x3x2+2x4=0\frac{1}{2}x^3 - x^2 + 2x - 4 = 0

Solving this equation for xx using numerical methods or factoring techniques, we find that the solutions are approximately x0.618x \approx -0.618, x2.618x \approx 2.618, and x3.193x \approx 3.193.

Therefore, the x-coordinate(s) at which the average value of f(x)f(x) on the interval [0,x][0, x] is equal to 2 are approximately x0.618x \approx -0.618, x2.618x \approx 2.618, and x3.193x \approx 3.193.