Post

Created by @nathanedwards
 at November 2nd 2023, 2:13:57 pm.

AP Calculus AB Exam Question:

Consider the curve given by the equation:

y=excos(x), for 0xπ2y = e^x\cos(x) \quad \text{, for } 0 \leq x \leq \dfrac{\pi}{2}(a)

(b) Determine whether the length of the curve from x=0x = 0 to x=π2x = \dfrac{\pi}{2} is greater than, equal to, or less than π2\dfrac{\pi}{2}.

Show all your work.

Answer:

(a) To find the length of the curve from x=0x=0 to x=π2x=\dfrac{\pi}{2}, we will use the formula for arc length denoted by LL: [L = \int_{a}^{b} \sqrt{1 + \left(\dfrac{dy}{dx}\right)^2} \ dx]

First, let's find the derivative dydx\dfrac{dy}{dx} of the equation y=excos(x)y = e^x\cos(x). Using the product rule and chain rule, we have:

dydx=ddx(excos(x))\dfrac{dy}{dx} = \dfrac{d}{dx} (e^x\cos(x))
dydx=exddx(cos(x))+cos(x)ddx(ex)\dfrac{dy}{dx} = e^x\cdot \dfrac{d}{dx}(\cos(x)) + \cos(x)\cdot \dfrac{d}{dx}(e^x)
dydx=ex(sin(x))+cos(x)ex\dfrac{dy}{dx} = e^x\cdot (-\sin(x)) + \cos(x)\cdot e^x
dydx=ex(cos(x)sin(x))\dfrac{dy}{dx} = e^x(\cos(x) - \sin(x))

Now we can substitute this derivative into the formula for arc length:

L=0π21+(ex(cos(x)sin(x)))2 dxL = \int_{0}^{\frac{\pi}{2}} \sqrt{1 + \left( e^x(\cos(x) - \sin(x))\right)^2} \ dx

Simplifying the expression inside the square root, we have:

L=0π21+(e2xcos2(x)2excos(x)sin(x)+e2xsin2(x)) dxL = \int_{0}^{\frac{\pi}{2}} \sqrt{1 + (e^{2x}\cos^2(x) - 2e^x\cos(x)\sin(x) + e^{2x}\sin^2(x))} \ dx
L=0π21+e2x(cos2(x)+sin2(x)) dxL = \int_{0}^{\frac{\pi}{2}} \sqrt{1 + e^{2x}(\cos^2(x) + \sin^2(x))} \ dx
L=0π21+e2x dxL = \int_{0}^{\frac{\pi}{2}} \sqrt{1 + e^{2x}} \ dx

Now let's evaluate the integral. We denote u=1+e2xu = 1 + e^{2x}, so dudx=2e2x\dfrac{du}{dx} = 2e^{2x}, which implies dx=du2e2xdx = \dfrac{du}{2e^{2x}}. Substituting this into the integral, we have:

L=u(0)u(π2)udu2e2xL = \int_{u(0)}^{u(\frac{\pi}{2})} \sqrt{u} \cdot \dfrac{du}{2e^{2x}}
L=12u(0)u(π2)ue2x duL = \dfrac{1}{2}\int_{u(0)}^{u(\frac{\pi}{2})} \dfrac{\sqrt{u}}{e^{2x}} \ du

Next, we need to express the limits of integration in terms of uu instead of xx. We know that u=1+e2xu = 1 + e^{2x}. Substituting x=0x = 0, we get u(0)=1+e0=2u(0) = 1 + e^0 = 2. Substituting x=π2x = \dfrac{\pi}{2}, we have u(π2)=1+eπ24.27u(\frac{\pi}{2}) = 1 + e^{\pi} \approx 24.27. Therefore, the integral becomes:

L=1221+eπue2x duL = \dfrac{1}{2}\int_{2}^{1+e^{\pi}} \dfrac{\sqrt{u}}{e^{2x}} \ du

Applying the substitution rule, f(g(x))g(x) dx=f(u) du\int f(g(x))g'(x) \ dx = \int f(u) \ du, we have:

L=1221+eπuu2 duL = \dfrac{1}{2}\int_{2}^{1+e^{\pi}} \dfrac{\sqrt{u}}{u^2} \ du
L=12[23u32]21+eπL = \dfrac{1}{2} \left[ -\dfrac{2}{3}u^{-\frac{3}{2}}\right]_{2}^{1+e^{\pi}}
L=13(21+eπ82)L = \dfrac{1}{3} \left( \dfrac{2}{\sqrt{1+e^{\pi}}} - \dfrac{8}{\sqrt{2}}\right)

Simplifying this expression, we obtain the arc length of the curve from x=0x=0 to x=π2x=\dfrac{\pi}{2} as:

L0.327L \approx 0.327(b)

Since LL is less than π2\dfrac{\pi}{2}, we can conclude that the length of the curve is less than π2\dfrac{\pi}{2}.