Post

Created by @nathanedwards
 at November 1st 2023, 2:47:13 am.

AP Physics 2 Exam Question: Quantum Phenomena

Consider a particle of mass mm in a one-dimensional potential energy well with a width of LL. The potential energy inside the well is given by the equation:

V(x)={0,if 0xL,otherwiseV(x) = \begin{cases} 0, & \text{if } 0 \leq x \leq L \\ \infty, & \text{otherwise} \end{cases}

The particle's wave function inside the well, ψ(x)\psi(x), can be represented as a linear combination of the ground state and the first excited state as follows:

ψ(x)=A(2L sin(πxL)+B 2L sin(2πxL))\psi(x) = A\left(\sqrt{\frac{2}{L}}\ \sin\left(\frac{\pi x}{L}\right) + B\ \sqrt{\frac{2}{L}}\ \sin\left(\frac{2\pi x}{L}\right)\right)

Where AA and BB are normalization constants.

a) Determine the possible values of the energy, EE, of the particle in terms of the fundamental constant \hbar and the particle's mass mm.

b) Calculate the normalization constant AA.

c) Calculate the normalization constant BB.

d) Determine the probability density, P(x)P(x), for finding the particle at position xx.

e) Calculate the average position, x\langle x \rangle, of the particle in the well.


Answer:

a) The energy, EE, can be determined by solving the time-independent Schrödinger equation:

22md2ψdx2+V(x)ψ=Eψ-\frac{{\hbar^2}}{{2m}}\frac{{d^2\psi}}{{dx^2}} + V(x)\psi = E\psi

Inside the well, the potential energy is zero, so the Schrödinger equation simplifies to:

22md2ψdx2=Eψ-\frac{{\hbar^2}}{{2m}}\frac{{d^2\psi}}{{dx^2}} = E\psi

We can start by taking the second derivative of the wave function:

d2ψdx2=d2dx2(A(2L sin(πxL)+B 2L sin(2πxL)))\frac{{d^2\psi}}{{dx^2}} = \frac{{d^2}}{{dx^2}}\left(A\left(\sqrt{\frac{2}{L}}\ \sin\left(\frac{\pi x}{L}\right) + B\ \sqrt{\frac{2}{L}}\ \sin\left(\frac{2\pi x}{L}\right)\right)\right)

Simplifying this expression, we have:

d2ψdx2=ddx(A(2L πLcos(πxL)+B 2L 2πLcos(2πxL)))\frac{{d^2\psi}}{{dx^2}} = \frac{{d}}{{dx}}\left(A\left(\sqrt{\frac{2}{L}}\ \frac{{\pi}}{{L}}\cos\left(\frac{\pi x}{L}\right) + B\ \sqrt{\frac{2}{L}}\ \frac{{2\pi}}{{L}}\cos\left(\frac{2\pi x}{L}\right)\right)\right)
d2ψdx2=A(2L π2L2sin(πxL)+B 2L 4π2L2sin(2πxL))\frac{{d^2\psi}}{{dx^2}} = -A\left(\sqrt{\frac{2}{L}}\ \frac{{\pi^2}}{{L^2}}\sin\left(\frac{\pi x}{L}\right) + B\ \sqrt{\frac{2}{L}}\ \frac{{4\pi^2}}{{L^2}}\sin\left(\frac{2\pi x}{L}\right)\right)

Substituting this back into the Schrödinger equation, we get:

22m(A(2L π2L2sin(πxL)+B 2L 4π2L2sin(2πxL)))=E(A(2L sin(πxL)+B 2L sin(2πxL)))-\frac{{\hbar^2}}{{2m}}\left(-A\left(\sqrt{\frac{2}{L}}\ \frac{{\pi^2}}{{L^2}}\sin\left(\frac{\pi x}{L}\right) + B\ \sqrt{\frac{2}{L}}\ \frac{{4\pi^2}}{{L^2}}\sin\left(\frac{2\pi x}{L}\right)\right)\right) = E\left(A\left(\sqrt{\frac{2}{L}}\ \sin\left(\frac{\pi x}{L}\right) + B\ \sqrt{\frac{2}{L}}\ \sin\left(\frac{2\pi x}{L}\right)\right)\right)

Simplifying this expression, we find:

22m(π2L2Asin(πxL)+4π2L2Bsin(2πxL))=E(A(2L sin(πxL)+B 2L sin(2πxL)))\frac{{\hbar^2}}{{2m}}\left(\frac{{\pi^2}}{{L^2}}A \sin\left(\frac{\pi x}{L}\right) + \frac{{4\pi^2}}{{L^2}}B \sin\left(\frac{2\pi x}{L}\right)\right) = E\left(A\left(\sqrt{\frac{2}{L}}\ \sin\left(\frac{\pi x}{L}\right) + B\ \sqrt{\frac{2}{L}}\ \sin\left(\frac{2\pi x}{L}\right)\right)\right)

Dividing both sides by ψ\psi, we obtain:

22m(π2L2A+4π2L2B)=E\frac{{\hbar^2}}{{2m}}\left(\frac{{\pi^2}}{{L^2}}A + \frac{{4\pi^2}}{{L^2}}B\right) = E

Therefore, the possible values of the energy, EE, are given by:

E=22m(π2L2A+4π2L2B)\boxed{E = \frac{{\hbar^2}}{{2m}}\left(\frac{{\pi^2}}{{L^2}}A + \frac{{4\pi^2}}{{L^2}}B\right)}

b) To calculate the normalization constant AA, we need to integrate the square of the absolute value of the wave function over all space and set it equal to 1 (since the wave function must be normalized). The integral is as follows:

0Lψ(x)2 dx=0L[A(2L sin(πxL)+B 2L sin(2πxL))]2 dx\int_{0}^{L} |\psi(x)|^2\ dx = \int_{0}^{L} \left[A\left(\sqrt{\frac{2}{L}}\ \sin\left(\frac{\pi x}{L}\right) + B\ \sqrt{\frac{2}{L}}\ \sin\left(\frac{2\pi x}{L}\right)\right)\right]^2\ dx

Simplifying and evaluating the integral, we find:

A2(2L L2)=A2A^2 \left(\frac{2}{L}\ \frac{L}{2}\right) = A^2

Since the integral equals 1, we have:

A2=1A^2 = 1

Taking the square root of both sides, we get:

A=1A = 1

Therefore, the normalization constant AA is equal to 1.

c) To calculate the normalization constant BB, we can use the same approach as in part (b). The integral is as follows:

0Lψ(x)2 dx=0L[A(2L sin(πxL)+B 2L sin(2πxL))]2 dx\int_{0}^{L} |\psi(x)|^2\ dx = \int_{0}^{L} \left[A\left(\sqrt{\frac{2}{L}}\ \sin\left(\frac{\pi x}{L}\right) + B\ \sqrt{\frac{2}{L}}\ \sin\left(\frac{2\pi x}{L}\right)\right)\right]^2\ dx

Expanding and evaluating the integral, we have:

A20L(2L sin2(πxL)+2B2L sin(πxL)2L sin(2πxL)+B22L sin2(2πxL)) dxA^2 \int_{0}^{L} \left(\frac{2}{L}\ \sin^2\left(\frac{\pi x}{L}\right) + 2B\sqrt{\frac{2}{L}}\ \sin\left(\frac{\pi x}{L}\right) \sqrt{\frac{2}{L}}\ \sin\left(\frac{2\pi x}{L}\right) + B^2\frac{2}{L}\ \sin^2\left(\frac{2\pi x}{L}\right)\right)\ dx

Simplifying this expression and evaluating the integral, we find:

A2(2L L2+2B2L 0×1+B22L L2)=A2+B2A^2 \left(\frac{2}{L}\ \frac{L}{2} + 2B\sqrt{\frac{2}{L}}\ 0 \times 1 + B^2\frac{2}{L}\ \frac{L}{2}\right) = A^2 + B^2

Since the integral equals 1, we have:

A2+B2=1A^2 + B^2 = 1

Substituting the value of AA (from part b) into this equation, we obtain:

1+B2=11 + B^2 = 1

Simplifying, we find:

B2=0B^2 = 0

Taking the square root of both sides, we get:

B=0B = 0

Therefore, the normalization constant BB is equal to 0.

d) The probability density, P(x)P(x), for finding the particle at position xx can be calculated as the square of the absolute value of the wave function:

P(x)=ψ(x)2=1(2L sin(πxL)+0 2L sin(2πxL))2P(x) = |\psi(x)|^2 = \left|1\left(\sqrt{\frac{2}{L}}\ \sin\left(\frac{\pi x}{L}\right) + 0\ \sqrt{\frac{2}{L}}\ \sin\left(\frac{2\pi x}{L}\right)\right)\right|^2

Simplifying and squaring the terms, we find:

P(x)=(2L sin(πxL))2P(x) = \left(\sqrt{\frac{2}{L}}\ \sin\left(\frac{\pi x}{L}\right)\right)^2
P(x)=2L sin2(πxL)P(x) = \frac{2}{L}\ \sin^2\left(\frac{\pi x}{L}\right)

Therefore, the probability density P(x)P(x) for finding the particle at position xx is given by:

P(x)=2L sin2(πxL)\boxed{P(x) = \frac{2}{L}\ \sin^2\left(\frac{\pi x}{L}\right)}

e) The average position, x\langle x \rangle, of the particle in the well can be calculated using the following formula:

x=0Lx ψ(x)2 dx\langle x \rangle = \int_{0}^{L} x\ |\psi(x)|^2\ dx

Substituting the wave function and evaluating the integral, we have:

x=0Lx (1(2L sin(πxL)+0 2L sin(2πxL)))2 dx\langle x \rangle = \int_{0}^{L} x\ \left(1\left(\sqrt{\frac{2}{L}}\ \sin\left(\frac{\pi x}{L}\right) + 0\ \sqrt{\frac{2}{L}}\ \sin\left(\frac{2\pi x}{L}\right)\right)\right)^2\ dx

Simplifying, we find:

x=0Lx(2L sin(πxL))2 dx\langle x \rangle = \int_{0}^{L} x\left(\sqrt{\frac{2}{L}}\ \sin\left(\frac{\pi x}{L}\right)\right)^2\ dx
x=0Lx(2L sin2(πxL)) dx\langle x \rangle = \int_{0}^{L} x\left(\frac{2}{L}\ \sin^2\left(\frac{\pi x}{L}\right)\right)\ dx

Expanding and evaluating the integral, we obtain:

x=2L0Lx sin2(πxL) dx\langle x \rangle = \frac{2}{L}\int_{0}^{L} x\ \sin^2\left(\frac{\pi x}{L}\right)\ dx

Using the identity sin2(θ)=12(1cos(2θ))\sin^2(\theta) = \frac{1}{2}(1 - \cos(2\theta)), we can rewrite the integral as:

x=2L0Lx(12(1cos(2πxL))) dx\langle x \rangle = \frac{2}{L}\int_{0}^{L} x\left(\frac{1}{2}\left(1 - \cos\left(\frac{2\pi x}{L}\right)\right)\right)\ dx

Distributing and evaluating the integral, we find:

x=1L(0Lx dx0Lxcos(2πxL) dx)\langle x \rangle = \frac{1}{L}\left(\int_{0}^{L} x\ dx - \int_{0}^{L} x\cos\left(\frac{2\pi x}{L}\right)\ dx\right)

The first integral is straightforward:

0Lx dx=[12x2]0L=12(L202)=12L2\int_{0}^{L} x\ dx = \left[\frac{1}{2}x^2\right]_{0}^L = \frac{1}{2}(L^2 - 0^2) = \frac{1}{2}L^2

For the second integral, we use integration by parts with u=xu = x and dv=cos(2πxL) dxdv = \cos\left(\frac{2\pi x}{L}\right)\ dx:

du=dx,v=L2πsin(2πxL)du = dx, \quad v = \frac{L}{2\pi}\sin\left(\frac{2\pi x}{L}\right)

Applying the integration by parts formula, we have:

0Lxcos(2πxL) dx=[L2πxsin(2πxL)]0L0LL2πsin(2πxL) dx\int_{0}^{L} x\cos\left(\frac{2\pi x}{L}\right)\ dx = \left[\frac{L}{2\pi}x\sin\left(\frac{2\pi x}{L}\right)\right]_{0}^L - \int_{0}^{L} \frac{L}{2\pi}\sin\left(\frac{2\pi x}{L}\right)\ dx

The first term evaluates to zero at both integration limits:

L2πLsin(2πLL)L2π0sin(2π0L)=0\frac{L}{2\pi}L\sin\left(\frac{2\pi L}{L}\right) - \frac{L}{2\pi}0\sin\left(\frac{2\pi 0}{L}\right) = 0

Simplifying the second term, we obtain:

L2π0Lsin(2πxL) dx=L2π[L2πcos(2πxL)]0L-\frac{L}{2\pi}\int_{0}^{L} \sin\left(\frac{2\pi x}{L}\right)\ dx = -\frac{L}{2\pi}\left[-\frac{L}{2\pi}\cos\left(\frac{2\pi x}{L}\right)\right]_{0}^L

Again, the first term evaluates to zero at both integration limits:

L2π[L2πcos(2πLL)]+L2π[L2πcos(2π0L)]=L22π(1π1π)=0-\frac{L}{2\pi}\left[-\frac{L}{2\pi}\cos\left(\frac{2\pi L}{L}\right)\right] + \frac{L}{2\pi}\left[-\frac{L}{2\pi}\cos\left(\frac{2\pi 0}{L}\right)\right] = \frac{L^2}{2\pi}\left(\frac{1}{\pi} - \frac{1}{\pi}\right) = 0

Substituting these results back into the expression for x\langle x \rangle, we get:

x=1L(12L20)=12L\langle x \rangle = \frac{1}{L}\left(\frac{1}{2}L^2 - 0\right) = \frac{1}{2}L

Therefore, the average position x\langle x \rangle of the particle in the well is given by:

x=12L\boxed{\langle x \rangle = \frac{1}{2}L}

Note: The solutions provided are based on the given information and assumptions. If additional information or context is provided, the solutions may need to be adjusted accordingly.