AP Physics 2 Exam Question: Quantum Phenomena
Consider a particle of mass m m m in a one-dimensional potential energy well with a width of L L L . The potential energy inside the well is given by the equation:
V ( x ) = { 0 , if 0 ≤ x ≤ L ∞ , otherwise V(x) = \begin{cases} 0, & \text{if } 0 \leq x \leq L \\ \infty, & \text{otherwise} \end{cases} V ( x ) = { 0 , ∞ , if 0 ≤ x ≤ L otherwise The particle's wave function inside the well, ψ ( x ) \psi(x) ψ ( x ) , can be represented as a linear combination of the ground state and the first excited state as follows:
ψ ( x ) = A ( 2 L sin ( π x L ) + B 2 L sin ( 2 π x L ) ) \psi(x) = A\left(\sqrt{\frac{2}{L}}\ \sin\left(\frac{\pi x}{L}\right) + B\ \sqrt{\frac{2}{L}}\ \sin\left(\frac{2\pi x}{L}\right)\right) ψ ( x ) = A ( L 2 sin ( L π x ) + B L 2 sin ( L 2 π x ) ) Where A A A and B B B are normalization constants.
a) Determine the possible values of the energy, E E E , of the particle in terms of the fundamental constant ℏ \hbar ℏ and the particle's mass m m m .
b) Calculate the normalization constant A A A .
c) Calculate the normalization constant B B B .
d) Determine the probability density, P ( x ) P(x) P ( x ) , for finding the particle at position x x x .
e) Calculate the average position, ⟨ x ⟩ \langle x \rangle ⟨ x ⟩ , of the particle in the well.
Answer:
a) The energy, E E E , can be determined by solving the time-independent Schrödinger equation:
− ℏ 2 2 m d 2 ψ d x 2 + V ( x ) ψ = E ψ -\frac{{\hbar^2}}{{2m}}\frac{{d^2\psi}}{{dx^2}} + V(x)\psi = E\psi − 2 m ℏ 2 d x 2 d 2 ψ + V ( x ) ψ = E ψ Inside the well, the potential energy is zero, so the Schrödinger equation simplifies to:
− ℏ 2 2 m d 2 ψ d x 2 = E ψ -\frac{{\hbar^2}}{{2m}}\frac{{d^2\psi}}{{dx^2}} = E\psi − 2 m ℏ 2 d x 2 d 2 ψ = E ψ We can start by taking the second derivative of the wave function:
d 2 ψ d x 2 = d 2 d x 2 ( A ( 2 L sin ( π x L ) + B 2 L sin ( 2 π x L ) ) ) \frac{{d^2\psi}}{{dx^2}} = \frac{{d^2}}{{dx^2}}\left(A\left(\sqrt{\frac{2}{L}}\ \sin\left(\frac{\pi x}{L}\right) + B\ \sqrt{\frac{2}{L}}\ \sin\left(\frac{2\pi x}{L}\right)\right)\right) d x 2 d 2 ψ = d x 2 d 2 ( A ( L 2 sin ( L π x ) + B L 2 sin ( L 2 π x ) ) ) Simplifying this expression, we have:
d 2 ψ d x 2 = d d x ( A ( 2 L π L cos ( π x L ) + B 2 L 2 π L cos ( 2 π x L ) ) ) \frac{{d^2\psi}}{{dx^2}} = \frac{{d}}{{dx}}\left(A\left(\sqrt{\frac{2}{L}}\ \frac{{\pi}}{{L}}\cos\left(\frac{\pi x}{L}\right) + B\ \sqrt{\frac{2}{L}}\ \frac{{2\pi}}{{L}}\cos\left(\frac{2\pi x}{L}\right)\right)\right) d x 2 d 2 ψ = d x d ( A ( L 2 L π cos ( L π x ) + B L 2 L 2 π cos ( L 2 π x ) ) ) d 2 ψ d x 2 = − A ( 2 L π 2 L 2 sin ( π x L ) + B 2 L 4 π 2 L 2 sin ( 2 π x L ) ) \frac{{d^2\psi}}{{dx^2}} = -A\left(\sqrt{\frac{2}{L}}\ \frac{{\pi^2}}{{L^2}}\sin\left(\frac{\pi x}{L}\right) + B\ \sqrt{\frac{2}{L}}\ \frac{{4\pi^2}}{{L^2}}\sin\left(\frac{2\pi x}{L}\right)\right) d x 2 d 2 ψ = − A ( L 2 L 2 π 2 sin ( L π x ) + B L 2 L 2 4 π 2 sin ( L 2 π x ) ) Substituting this back into the Schrödinger equation, we get:
− ℏ 2 2 m ( − A ( 2 L π 2 L 2 sin ( π x L ) + B 2 L 4 π 2 L 2 sin ( 2 π x L ) ) ) = E ( A ( 2 L sin ( π x L ) + B 2 L sin ( 2 π x L ) ) ) -\frac{{\hbar^2}}{{2m}}\left(-A\left(\sqrt{\frac{2}{L}}\ \frac{{\pi^2}}{{L^2}}\sin\left(\frac{\pi x}{L}\right) + B\ \sqrt{\frac{2}{L}}\ \frac{{4\pi^2}}{{L^2}}\sin\left(\frac{2\pi x}{L}\right)\right)\right) = E\left(A\left(\sqrt{\frac{2}{L}}\ \sin\left(\frac{\pi x}{L}\right) + B\ \sqrt{\frac{2}{L}}\ \sin\left(\frac{2\pi x}{L}\right)\right)\right) − 2 m ℏ 2 ( − A ( L 2 L 2 π 2 sin ( L π x ) + B L 2 L 2 4 π 2 sin ( L 2 π x ) ) ) = E ( A ( L 2 sin ( L π x ) + B L 2 sin ( L 2 π x ) ) ) Simplifying this expression, we find:
ℏ 2 2 m ( π 2 L 2 A sin ( π x L ) + 4 π 2 L 2 B sin ( 2 π x L ) ) = E ( A ( 2 L sin ( π x L ) + B 2 L sin ( 2 π x L ) ) ) \frac{{\hbar^2}}{{2m}}\left(\frac{{\pi^2}}{{L^2}}A \sin\left(\frac{\pi x}{L}\right) + \frac{{4\pi^2}}{{L^2}}B \sin\left(\frac{2\pi x}{L}\right)\right) = E\left(A\left(\sqrt{\frac{2}{L}}\ \sin\left(\frac{\pi x}{L}\right) + B\ \sqrt{\frac{2}{L}}\ \sin\left(\frac{2\pi x}{L}\right)\right)\right) 2 m ℏ 2 ( L 2 π 2 A sin ( L π x ) + L 2 4 π 2 B sin ( L 2 π x ) ) = E ( A ( L 2 sin ( L π x ) + B L 2 sin ( L 2 π x ) ) ) Dividing both sides by ψ \psi ψ , we obtain:
ℏ 2 2 m ( π 2 L 2 A + 4 π 2 L 2 B ) = E \frac{{\hbar^2}}{{2m}}\left(\frac{{\pi^2}}{{L^2}}A + \frac{{4\pi^2}}{{L^2}}B\right) = E 2 m ℏ 2 ( L 2 π 2 A + L 2 4 π 2 B ) = E Therefore, the possible values of the energy, E E E , are given by:
E = ℏ 2 2 m ( π 2 L 2 A + 4 π 2 L 2 B ) \boxed{E = \frac{{\hbar^2}}{{2m}}\left(\frac{{\pi^2}}{{L^2}}A + \frac{{4\pi^2}}{{L^2}}B\right)} E = 2 m ℏ 2 ( L 2 π 2 A + L 2 4 π 2 B ) b) To calculate the normalization constant A A A , we need to integrate the square of the absolute value of the wave function over all space and set it equal to 1 (since the wave function must be normalized). The integral is as follows:
∫ 0 L ∣ ψ ( x ) ∣ 2 d x = ∫ 0 L [ A ( 2 L sin ( π x L ) + B 2 L sin ( 2 π x L ) ) ] 2 d x \int_{0}^{L} |\psi(x)|^2\ dx = \int_{0}^{L} \left[A\left(\sqrt{\frac{2}{L}}\ \sin\left(\frac{\pi x}{L}\right) + B\ \sqrt{\frac{2}{L}}\ \sin\left(\frac{2\pi x}{L}\right)\right)\right]^2\ dx ∫ 0 L ∣ ψ ( x ) ∣ 2 d x = ∫ 0 L [ A ( L 2 sin ( L π x ) + B L 2 sin ( L 2 π x ) ) ] 2 d x Simplifying and evaluating the integral, we find:
A 2 ( 2 L L 2 ) = A 2 A^2 \left(\frac{2}{L}\ \frac{L}{2}\right) = A^2 A 2 ( L 2 2 L ) = A 2 Since the integral equals 1, we have:
Taking the square root of both sides, we get:
Therefore, the normalization constant A A A is equal to 1.
c) To calculate the normalization constant B B B , we can use the same approach as in part (b). The integral is as follows:
∫ 0 L ∣ ψ ( x ) ∣ 2 d x = ∫ 0 L [ A ( 2 L sin ( π x L ) + B 2 L sin ( 2 π x L ) ) ] 2 d x \int_{0}^{L} |\psi(x)|^2\ dx = \int_{0}^{L} \left[A\left(\sqrt{\frac{2}{L}}\ \sin\left(\frac{\pi x}{L}\right) + B\ \sqrt{\frac{2}{L}}\ \sin\left(\frac{2\pi x}{L}\right)\right)\right]^2\ dx ∫ 0 L ∣ ψ ( x ) ∣ 2 d x = ∫ 0 L [ A ( L 2 sin ( L π x ) + B L 2 sin ( L 2 π x ) ) ] 2 d x Expanding and evaluating the integral, we have:
A 2 ∫ 0 L ( 2 L sin 2 ( π x L ) + 2 B 2 L sin ( π x L ) 2 L sin ( 2 π x L ) + B 2 2 L sin 2 ( 2 π x L ) ) d x A^2 \int_{0}^{L} \left(\frac{2}{L}\ \sin^2\left(\frac{\pi x}{L}\right) + 2B\sqrt{\frac{2}{L}}\ \sin\left(\frac{\pi x}{L}\right) \sqrt{\frac{2}{L}}\ \sin\left(\frac{2\pi x}{L}\right) + B^2\frac{2}{L}\ \sin^2\left(\frac{2\pi x}{L}\right)\right)\ dx A 2 ∫ 0 L ( L 2 sin 2 ( L π x ) + 2 B L 2 sin ( L π x ) L 2 sin ( L 2 π x ) + B 2 L 2 sin 2 ( L 2 π x ) ) d x Simplifying this expression and evaluating the integral, we find:
A 2 ( 2 L L 2 + 2 B 2 L 0 × 1 + B 2 2 L L 2 ) = A 2 + B 2 A^2 \left(\frac{2}{L}\ \frac{L}{2} + 2B\sqrt{\frac{2}{L}}\ 0 \times 1 + B^2\frac{2}{L}\ \frac{L}{2}\right) = A^2 + B^2 A 2 ( L 2 2 L + 2 B L 2 0 × 1 + B 2 L 2 2 L ) = A 2 + B 2 Since the integral equals 1, we have:
A 2 + B 2 = 1 A^2 + B^2 = 1 A 2 + B 2 = 1 Substituting the value of A A A (from part b) into this equation, we obtain:
Simplifying, we find:
Taking the square root of both sides, we get:
Therefore, the normalization constant B B B is equal to 0.
d) The probability density, P ( x ) P(x) P ( x ) , for finding the particle at position x x x can be calculated as the square of the absolute value of the wave function:
P ( x ) = ∣ ψ ( x ) ∣ 2 = ∣ 1 ( 2 L sin ( π x L ) + 0 2 L sin ( 2 π x L ) ) ∣ 2 P(x) = |\psi(x)|^2 = \left|1\left(\sqrt{\frac{2}{L}}\ \sin\left(\frac{\pi x}{L}\right) + 0\ \sqrt{\frac{2}{L}}\ \sin\left(\frac{2\pi x}{L}\right)\right)\right|^2 P ( x ) = ∣ ψ ( x ) ∣ 2 = 1 ( L 2 sin ( L π x ) + 0 L 2 sin ( L 2 π x ) ) 2 Simplifying and squaring the terms, we find:
P ( x ) = ( 2 L sin ( π x L ) ) 2 P(x) = \left(\sqrt{\frac{2}{L}}\ \sin\left(\frac{\pi x}{L}\right)\right)^2 P ( x ) = ( L 2 sin ( L π x ) ) 2 P ( x ) = 2 L sin 2 ( π x L ) P(x) = \frac{2}{L}\ \sin^2\left(\frac{\pi x}{L}\right) P ( x ) = L 2 sin 2 ( L π x ) Therefore, the probability density P ( x ) P(x) P ( x ) for finding the particle at position x x x is given by:
P ( x ) = 2 L sin 2 ( π x L ) \boxed{P(x) = \frac{2}{L}\ \sin^2\left(\frac{\pi x}{L}\right)} P ( x ) = L 2 sin 2 ( L π x ) e) The average position, ⟨ x ⟩ \langle x \rangle ⟨ x ⟩ , of the particle in the well can be calculated using the following formula:
⟨ x ⟩ = ∫ 0 L x ∣ ψ ( x ) ∣ 2 d x \langle x \rangle = \int_{0}^{L} x\ |\psi(x)|^2\ dx ⟨ x ⟩ = ∫ 0 L x ∣ ψ ( x ) ∣ 2 d x Substituting the wave function and evaluating the integral, we have:
⟨ x ⟩ = ∫ 0 L x ( 1 ( 2 L sin ( π x L ) + 0 2 L sin ( 2 π x L ) ) ) 2 d x \langle x \rangle = \int_{0}^{L} x\ \left(1\left(\sqrt{\frac{2}{L}}\ \sin\left(\frac{\pi x}{L}\right) + 0\ \sqrt{\frac{2}{L}}\ \sin\left(\frac{2\pi x}{L}\right)\right)\right)^2\ dx ⟨ x ⟩ = ∫ 0 L x ( 1 ( L 2 sin ( L π x ) + 0 L 2 sin ( L 2 π x ) ) ) 2 d x Simplifying, we find:
⟨ x ⟩ = ∫ 0 L x ( 2 L sin ( π x L ) ) 2 d x \langle x \rangle = \int_{0}^{L} x\left(\sqrt{\frac{2}{L}}\ \sin\left(\frac{\pi x}{L}\right)\right)^2\ dx ⟨ x ⟩ = ∫ 0 L x ( L 2 sin ( L π x ) ) 2 d x ⟨ x ⟩ = ∫ 0 L x ( 2 L sin 2 ( π x L ) ) d x \langle x \rangle = \int_{0}^{L} x\left(\frac{2}{L}\ \sin^2\left(\frac{\pi x}{L}\right)\right)\ dx ⟨ x ⟩ = ∫ 0 L x ( L 2 sin 2 ( L π x ) ) d x Expanding and evaluating the integral, we obtain:
⟨ x ⟩ = 2 L ∫ 0 L x sin 2 ( π x L ) d x \langle x \rangle = \frac{2}{L}\int_{0}^{L} x\ \sin^2\left(\frac{\pi x}{L}\right)\ dx ⟨ x ⟩ = L 2 ∫ 0 L x sin 2 ( L π x ) d x Using the identity sin 2 ( θ ) = 1 2 ( 1 − cos ( 2 θ ) ) \sin^2(\theta) = \frac{1}{2}(1 - \cos(2\theta)) sin 2 ( θ ) = 2 1 ( 1 − cos ( 2 θ )) , we can rewrite the integral as:
⟨ x ⟩ = 2 L ∫ 0 L x ( 1 2 ( 1 − cos ( 2 π x L ) ) ) d x \langle x \rangle = \frac{2}{L}\int_{0}^{L} x\left(\frac{1}{2}\left(1 - \cos\left(\frac{2\pi x}{L}\right)\right)\right)\ dx ⟨ x ⟩ = L 2 ∫ 0 L x ( 2 1 ( 1 − cos ( L 2 π x ) ) ) d x Distributing and evaluating the integral, we find:
⟨ x ⟩ = 1 L ( ∫ 0 L x d x − ∫ 0 L x cos ( 2 π x L ) d x ) \langle x \rangle = \frac{1}{L}\left(\int_{0}^{L} x\ dx - \int_{0}^{L} x\cos\left(\frac{2\pi x}{L}\right)\ dx\right) ⟨ x ⟩ = L 1 ( ∫ 0 L x d x − ∫ 0 L x cos ( L 2 π x ) d x ) The first integral is straightforward:
∫ 0 L x d x = [ 1 2 x 2 ] 0 L = 1 2 ( L 2 − 0 2 ) = 1 2 L 2 \int_{0}^{L} x\ dx = \left[\frac{1}{2}x^2\right]_{0}^L = \frac{1}{2}(L^2 - 0^2) = \frac{1}{2}L^2 ∫ 0 L x d x = [ 2 1 x 2 ] 0 L = 2 1 ( L 2 − 0 2 ) = 2 1 L 2 For the second integral, we use integration by parts with u = x u = x u = x and d v = cos ( 2 π x L ) d x dv = \cos\left(\frac{2\pi x}{L}\right)\ dx d v = cos ( L 2 π x ) d x :
d u = d x , v = L 2 π sin ( 2 π x L ) du = dx, \quad v = \frac{L}{2\pi}\sin\left(\frac{2\pi x}{L}\right) d u = d x , v = 2 π L sin ( L 2 π x ) Applying the integration by parts formula, we have:
∫ 0 L x cos ( 2 π x L ) d x = [ L 2 π x sin ( 2 π x L ) ] 0 L − ∫ 0 L L 2 π sin ( 2 π x L ) d x \int_{0}^{L} x\cos\left(\frac{2\pi x}{L}\right)\ dx = \left[\frac{L}{2\pi}x\sin\left(\frac{2\pi x}{L}\right)\right]_{0}^L - \int_{0}^{L} \frac{L}{2\pi}\sin\left(\frac{2\pi x}{L}\right)\ dx ∫ 0 L x cos ( L 2 π x ) d x = [ 2 π L x sin ( L 2 π x ) ] 0 L − ∫ 0 L 2 π L sin ( L 2 π x ) d x The first term evaluates to zero at both integration limits:
L 2 π L sin ( 2 π L L ) − L 2 π 0 sin ( 2 π 0 L ) = 0 \frac{L}{2\pi}L\sin\left(\frac{2\pi L}{L}\right) - \frac{L}{2\pi}0\sin\left(\frac{2\pi 0}{L}\right) = 0 2 π L L sin ( L 2 π L ) − 2 π L 0 sin ( L 2 π 0 ) = 0 Simplifying the second term, we obtain:
− L 2 π ∫ 0 L sin ( 2 π x L ) d x = − L 2 π [ − L 2 π cos ( 2 π x L ) ] 0 L -\frac{L}{2\pi}\int_{0}^{L} \sin\left(\frac{2\pi x}{L}\right)\ dx = -\frac{L}{2\pi}\left[-\frac{L}{2\pi}\cos\left(\frac{2\pi x}{L}\right)\right]_{0}^L − 2 π L ∫ 0 L sin ( L 2 π x ) d x = − 2 π L [ − 2 π L cos ( L 2 π x ) ] 0 L Again, the first term evaluates to zero at both integration limits:
− L 2 π [ − L 2 π cos ( 2 π L L ) ] + L 2 π [ − L 2 π cos ( 2 π 0 L ) ] = L 2 2 π ( 1 π − 1 π ) = 0 -\frac{L}{2\pi}\left[-\frac{L}{2\pi}\cos\left(\frac{2\pi L}{L}\right)\right] + \frac{L}{2\pi}\left[-\frac{L}{2\pi}\cos\left(\frac{2\pi 0}{L}\right)\right] = \frac{L^2}{2\pi}\left(\frac{1}{\pi} - \frac{1}{\pi}\right) = 0 − 2 π L [ − 2 π L cos ( L 2 π L ) ] + 2 π L [ − 2 π L cos ( L 2 π 0 ) ] = 2 π L 2 ( π 1 − π 1 ) = 0 Substituting these results back into the expression for ⟨ x ⟩ \langle x \rangle ⟨ x ⟩ , we get:
⟨ x ⟩ = 1 L ( 1 2 L 2 − 0 ) = 1 2 L \langle x \rangle = \frac{1}{L}\left(\frac{1}{2}L^2 - 0\right) = \frac{1}{2}L ⟨ x ⟩ = L 1 ( 2 1 L 2 − 0 ) = 2 1 L Therefore, the average position ⟨ x ⟩ \langle x \rangle ⟨ x ⟩ of the particle in the well is given by:
⟨ x ⟩ = 1 2 L \boxed{\langle x \rangle = \frac{1}{2}L} ⟨ x ⟩ = 2 1 L
Note: The solutions provided are based on the given information and assumptions. If additional information or context is provided, the solutions may need to be adjusted accordingly.