Post

Created by @nathanedwards
 at November 1st 2023, 4:07:35 am.

Question:

Let f(x)f(x) be a differentiable function defined implicitly by the equation x2+y23xy=6x^2 + y^2 - 3xy = 6. Find dydx\frac{{dy}}{{dx}} at the point (1,2)(1,2).

Answer:

Given: x2+y23xy=6x^2 + y^2 - 3xy = 6

Let's differentiate both sides of the equation with respect to xx.

ddx(x2+y23xy)=ddx(6)\frac{{d}}{{dx}}(x^2 + y^2 - 3xy) = \frac{{d}}{{dx}}(6)

Using the sum rule and the chain rule, we can differentiate each term on the left side of the equation.

ddx(x2)+ddx(y2)ddx(3xy)=0\frac{{d}}{{dx}}(x^2) + \frac{{d}}{{dx}}(y^2) - \frac{{d}}{{dx}}(3xy) = 0

Differentiating each term, we get:

2x+2yy(3y+3xy)=02x + 2yy' - (3y + 3xy') = 0

2x+2yy3y3xy=0\Rightarrow 2x + 2yy' - 3y - 3xy' = 0

Now, we can rearrange the equation to solve for dydx\frac{{dy}}{{dx}}.

2yy3xy=3y2x2yy' - 3xy' = 3y - 2x

y(2y3x)=3y2xy'(2y - 3x) = 3y - 2x

y=3y2x2y3x\Rightarrow y' = \frac{{3y - 2x}}{{2y - 3x}}

To find dydx\frac{{dy}}{{dx}} at the point (1,2)(1,2), substitute x=1x = 1 and y=2y = 2 into the equation we just derived.

y=3(2)2(1)2(2)3(1)y' = \frac{{3(2) - 2(1)}}{{2(2) - 3(1)}}

Solving the expression on the right side, we find:

y=6243y' = \frac{{6 - 2}}{{4 - 3}}

y=41\Rightarrow y' = \frac{{4}}{{1}}

Hence, the slope of the curve at the point (1,2)(1,2) is dydx=4\frac{{dy}}{{dx}} = 4.