Post

Created by @nathanedwards
 at October 31st 2023, 10:22:58 pm.

AP Calculus AB Exam Question:

Let f(x) be a continuous function on the interval [a, b] given by the equation:

f(x)=x32x2+2x3f(x) = \frac{x^3}{2} - x^2 + 2x - 3(a)
F(x)=axf(t)dtF(x) = \int_{a}^{x} f(t) dt(b)

Answer:

(a) To find the derivative of F(x), apply the Fundamental Theorem of Calculus:

According to the theorem, if F(x) is the antiderivative of f(x), then:

F(x)=f(x)F'(x) = f(x)

Therefore, to find F'(x), we need to find the antiderivative of f(x) by integrating the function. Let's proceed with the integration:

F(x)=axf(t)dtF(x) = \int_{a}^{x} f(t) dt
F(x)=ax(t32t2+2t3)dtF(x) = \int_{a}^{x} \left( \frac{t^3}{2} - t^2 + 2t - 3 \right) dt

Using the power rule and the properties of integration, we can integrate term by term:

F(x)=12axt3dtaxt2dt+2axtdt3axdtF(x) = \frac{1}{2} \int_{a}^{x} t^3 dt - \int_{a}^{x} t^2 dt + 2 \int_{a}^{x} t dt - 3 \int_{a}^{x} dt
F(x)=12[t44]ax[t33]ax+2[t22]ax3[t]axF(x) = \frac{1}{2} \left[\frac{t^4}{4}\right]_{a}^{x} - \left[\frac{t^3}{3}\right]_{a}^{x} + 2 \left[\frac{t^2}{2}\right]_{a}^{x} - 3 \left[t\right]_{a}^{x}

Simplifying further:

F(x)=18x413x3+x232x18a4+13a3a2+32aF(x) = \frac{1}{8}x^4 - \frac{1}{3}x^3 + x^2 - \frac{3}{2}x - \frac{1}{8}a^4 + \frac{1}{3}a^3 - a^2 + \frac{3}{2}a

Therefore, the derivative of F(x), based on the Fundamental Theorem of Calculus, is:

F(x)=ddx[18x413x3+x232x18a4+13a3a2+32a]F'(x) = \frac{d}{dx} \left[\frac{1}{8}x^4 - \frac{1}{3}x^3 + x^2 - \frac{3}{2}x - \frac{1}{8}a^4 + \frac{1}{3}a^3 - a^2 + \frac{3}{2}a\right]
F(x)=ddx[18x413x3+x232x](constant terms do not affect the derivative)F'(x) = \frac{d}{dx} \left[\frac{1}{8}x^4 - \frac{1}{3}x^3 + x^2 - \frac{3}{2}x\right] \quad \text{(constant terms do not affect the derivative)}
F(x)=184x3133x2+2x32F'(x) = \frac{1}{8}\cdot4x^3 - \frac{1}{3}\cdot3x^2 + 2x - \frac{3}{2}

Simplifying further:

F(x)=12x3x2+2x32F'(x) = \frac{1}{2}x^3 - x^2 + 2x - \frac{3}{2}(b)
F(b)F(a)=(18b413b3+b232b)(18a413a3+a232a)F(b) - F(a) = \left(\frac{1}{8}b^4 - \frac{1}{3}b^3 + b^2 - \frac{3}{2}b\right) - \left(\frac{1}{8}a^4 - \frac{1}{3}a^3 + a^2 - \frac{3}{2}a\right)

Simplifying further:

F(b)F(a)=18b418a413b3+13a3+b2a232b+32aF(b) - F(a) = \frac{1}{8}b^4 - \frac{1}{8}a^4 - \frac{1}{3}b^3 + \frac{1}{3}a^3 + b^2 - a^2 - \frac{3}{2}b + \frac{3}{2}a

Therefore, F(b) - F(a) can be written as:

F(b)F(a)=18(b4a4)13(b3a3)+(b2a2)32(ba)F(b) - F(a) = \frac{1}{8}(b^4 - a^4) - \frac{1}{3}(b^3 - a^3) + (b^2 - a^2) - \frac{3}{2}(b - a)