Post

Created by @nathanedwards
 at November 1st 2023, 2:48:12 am.

AP Calculus AB Exam Question:

Find the limit algebraically:

limx0(sin(3x)2x)1/x \lim_{x \to 0} \left(\frac{\sin(3x)}{2x}\right)^{1/x}

Answer and Explanation:

To find the limit algebraically, we can start by multiplying and dividing the expression inside the limit by 3:

limx0(3sin(3x)32x)1/x \lim_{x \to 0} \left(\frac{3 \sin(3x)}{3 \cdot 2x}\right)^{1/x}

Next, we can simplify the expression inside the limit using the fact that limx0sin(x)x=1\lim_{x \to 0} \frac{\sin(x)}{x} = 1. Applying this result:

limx0(3sin(3x)32x)1/x=limx0[(3sin(3x)3x)(12x)]1/x \lim_{x \to 0} \left(\frac{3 \sin(3x)}{3 \cdot 2x}\right)^{1/x} = \lim_{x \to 0} \left[\left(\frac{3 \sin(3x)}{3x}\right) \cdot \left(\frac{1}{2x}\right)\right]^{1/x}

Applying the limits separately, we have:

limx0(3sin(3x)3x)1/xlimx0(12x)1/x \lim_{x \to 0} \left(\frac{3 \sin(3x)}{3x}\right)^{1/x} \cdot \lim_{x \to 0} \left(\frac{1}{2x}\right)^{1/x}

We can evaluate each limit separately. First, for the left limit, we recognize that the expression inside the limit limx0(3sin(3x)3x)\lim_{x \to 0} \left(\frac{3 \sin(3x)}{3x}\right) is of the form (f(x)g(x))\left(\frac{f(x)}{g(x)}\right), where f(x)=3sin(3x)f(x) = 3 \sin(3x) and g(x)=3xg(x) = 3x. Since limx0f(x)g(x)=1\lim_{x \to 0} \frac{f(x)}{g(x)} = 1, we have:

limx0(3sin(3x)3x)=1 \lim_{x \to 0} \left(\frac{3 \sin(3x)}{3x}\right) = 1

For the right limit, we can express limx0(12x)1/x\lim_{x \to 0} \left(\frac{1}{2x}\right)^{1/x} in the form a1/xa^{1/x} by raising both the numerator and denominator to the xxth power:

limx0(12x)1/x=limx0((12x)x)1/x \lim_{x \to 0} \left(\frac{1}{2x}\right)^{1/x} = \lim_{x \to 0} \left(\left(\frac{1}{2x}\right)^{x}\right)^{1/x}

Now, we recognize that the expression inside the limit limx0(12x)x\lim_{x \to 0} \left(\frac{1}{2x}\right)^x is of the form axa^x, where a=12xa = \frac{1}{2x}. Using the property limx0ax=1\lim_{x \to 0} a^x = 1, we can evaluate the limit as:

limx0(12x)1/x=1 \lim_{x \to 0} \left(\frac{1}{2x}\right)^{1/x} = 1

Finally, multiplying the left and right limits:

limx0(sin(3x)2x)1/x=11=1 \lim_{x \to 0} \left(\frac{\sin(3x)}{2x}\right)^{1/x} = 1 \cdot 1 = \boxed{1}

Therefore, the limit of the given expression as xx approaches 0 is 1.