Post

Created by @nathanedwards
 at November 4th 2023, 6:45:39 pm.

Question:

A metal rod of length 1 meter has a thermal conductivity of 150 W/m·K. The rod is kept between two heat reservoirs, A and B, maintained at temperatures of 500°C and 100°C respectively. The rod is insulated from the surroundings.

  1. Calculate the rate of heat transfer through the rod if the cross-sectional area of the rod is 0.01 m².

  2. Determine the temperature difference across the rod.

  3. Calculate the rate at which heat is transferred from reservoir A to reservoir B.

Answer:

  1. To calculate the rate of heat transfer through the rod, we can use the formula for heat conduction:

    q=kAΔTL\displaystyle q=\dfrac{kA\Delta T}{L}

    where:

    • q\displaystyle q is the rate of heat transfer through the rod,
    • k\displaystyle k is the thermal conductivity of the rod,
    • A\displaystyle A is the cross-sectional area of the rod,
    • ΔT\displaystyle \Delta T is the temperature difference across the rod, and
    • L\displaystyle L is the length of the rod.

    Plugging in the given values:

    q=(150W/mK)×(0.01m2)×(500K100K)1m\displaystyle q=\dfrac{\left( 150\, \text{W/m} \cdot \text{K}\right) \times \left( 0.01\, \text{m}^{2}\right) \times \left( 500\, \text{K}-100\, \text{K}\right) }{1\, \text{m}}

    q=1500WK1m\displaystyle q=\dfrac{1500\, \text{W} \cdot \text{K}}{1\, \text{m}}

    q=1500W\displaystyle q=1500\, \text{W}

    Therefore, the rate of heat transfer through the rod is 1500\displaystyle 1500 W.

  2. The temperature difference across the rod can be calculated using the formula for temperature difference in heat conduction:

    ΔT=qLkA\displaystyle \Delta T=\dfrac{q\cdot L}{k\cdot A}

    Plugging in the given values:

    ΔT=(1500W)×(1m)(150W/mK)×(0.01m2)\displaystyle \Delta T=\dfrac{\left( 1500\, \text{W}\right) \times \left( 1\, \text{m}\right) }{\left( 150\, \text{W/m} \cdot \text{K}\right) \times \left( 0.01\, \text{m}^{2}\right) }

    ΔT=1500WK1.5W\displaystyle \Delta T=\dfrac{1500\, \text{WK}}{1.5\, \text{W}}

    ΔT=1000K\displaystyle \Delta T=1000\, \text{K}

    Therefore, the temperature difference across the rod is 1000\displaystyle 1000 K.

  3. The rate at which heat is transferred from reservoir A to reservoir B can be calculated using the formula:

    qAB=kA(TATB)L\displaystyle q_{\text{AB}}=\dfrac{kA\left( T_{\text{A}}-T_{\text{B}}\right) }{L}

    Plugging in the given values:

    qAB=(150W/mK)×(0.01m2)×(500K100K)1m\displaystyle q_{\text{AB}}=\dfrac{\left( 150\, \text{W/m} \cdot \text{K}\right) \times \left( 0.01\, \text{m}^{2}\right) \times \left( 500\, \text{K}-100\, \text{K}\right) }{1\, \text{m}}

    qAB=1500WK1m\displaystyle q_{\text{AB}}=\dfrac{1500\, \text{W} \cdot \text{K}}{1\, \text{m}}

    qAB=1500W\displaystyle q_{\text{AB}}=1500\, \text{W}

    Therefore, the rate at which heat is transferred from reservoir A to reservoir B is 1500\displaystyle 1500 W.