Consider the function f(x)=x2+13. Let F(x) be the indefinite integral of f(x) and let A be the definite integral of f(x) on the interval [0,2].
a) Find F(x).
b) Evaluate the value of A.
c) Find the average value of f(x) on the interval [0,2].
Answer:
a) To find F(x), we need to find the indefinite integral of f(x). Recall that the integral of x2+11 can be found using the inverse tangent function, tan−1(x).
We can rewrite f(x) as f(x)=1+x23.
So, F(x)=∫f(x)dx
F(x)=∫1+x23dx
Using the substitution u=1+x2, we have du=2xdx. Rearranging, we get dx=2x1du.
F(x)=∫u3⋅2x1du
F(x)=23∫u1du
F(x)=23ln∣u∣+C
Substituting back u=1+x2:
F(x)=23ln∣1+x2∣+C
b) To evaluate the definite integral A=∫02f(x)dx, we can directly substitute the limits into F(x) and subtract:
A=F(2)−F(0)A=23ln∣1+22∣−23ln∣1+02∣A=23ln5
c) The average value of a function f(x) on an interval [a,b] is given by:
Average value=b−a1∫abf(x)dx
In this case, we want to find the average value of f(x) on the interval [0,2]:
Average value=2−01∫021+x23dxAverage value=23∫021+x21dx
Using the same substitution as before, u=1+x2, we have:
Average value=23∫02u1duAverage value=23ln∣u∣02Average value=23(ln5−ln1)Average value=23ln5
Thus, the average value of f(x) on the interval [0,2] is also 23ln5.