Post

Created by @nathanedwards
 at November 1st 2023, 2:34:07 pm.

AP Calculus AB Exam Question:

Consider the function f(x)=3x2+1f(x) = \frac{3}{x^2+1}. Let F(x)F(x) be the indefinite integral of f(x)f(x) and let AA be the definite integral of f(x)f(x) on the interval [0,2][0, 2].

a) Find F(x)F(x).

b) Evaluate the value of AA.

c) Find the average value of f(x)f(x) on the interval [0,2][0, 2].

Answer:

a) To find F(x)F(x), we need to find the indefinite integral of f(x)f(x). Recall that the integral of 1x2+1\frac{1}{x^2+1} can be found using the inverse tangent function, tan1(x)\tan^{-1}(x).

We can rewrite f(x)f(x) as f(x)=31+x2f(x) = \frac{3}{1+x^2}.

So, F(x)=f(x)dxF(x) = \int f(x) \, dx

F(x)=31+x2dxF(x) = \int \frac{3}{1+x^2} \, dx

Using the substitution u=1+x2u = 1+x^2, we have du=2xdxdu = 2x \, dx. Rearranging, we get dx=12xdudx = \frac{1}{2x} \, du.

F(x)=3u12xduF(x) = \int \frac{3}{u} \cdot \frac{1}{2x} \, du

F(x)=321uduF(x) = \frac{3}{2} \int \frac{1}{u} \, du

F(x)=32lnu+CF(x) = \frac{3}{2} \ln|u| + C

Substituting back u=1+x2u = 1+x^2:

F(x)=32ln1+x2+CF(x) = \frac{3}{2} \ln|1+x^2| + C

b) To evaluate the definite integral A=02f(x)dxA = \int_0^2 f(x) \, dx, we can directly substitute the limits into F(x)F(x) and subtract:

A=F(2)F(0)A = F(2) - F(0)
A=32ln1+2232ln1+02A = \frac{3}{2} \ln|1+2^2| - \frac{3}{2} \ln|1+0^2|
A=32ln5A = \frac{3}{2} \ln 5

c) The average value of a function f(x)f(x) on an interval [a,b][a, b] is given by:

Average value=1baabf(x)dx\text{Average value} = \frac{1}{b-a} \int_a^b f(x) \, dx

In this case, we want to find the average value of f(x)f(x) on the interval [0,2][0, 2]:

Average value=1200231+x2dx\text{Average value} = \frac{1}{2-0} \int_0^2 \frac{3}{1+x^2} \, dx
Average value=320211+x2dx\text{Average value} = \frac{3}{2} \int_0^2 \frac{1}{1+x^2} \, dx

Using the same substitution as before, u=1+x2u = 1+x^2, we have:

Average value=32021udu\text{Average value} = \frac{3}{2} \int_0^2 \frac{1}{u} \, du
Average value=32lnu02\text{Average value} = \frac{3}{2} \ln|u| \bigg|_0^2
Average value=32(ln5ln1)\text{Average value} = \frac{3}{2} (\ln 5 - \ln 1)
Average value=32ln5\text{Average value} = \frac{3}{2} \ln 5

Thus, the average value of f(x)f(x) on the interval [0,2][0, 2] is also 32ln5\frac{3}{2} \ln 5.