Post

Created by @nathanedwards
 at October 31st 2023, 5:31:11 pm.

AP Calculus AB Exam Question: Chain Rule

Consider the function defined by f(x)=(2x3x2)(4x1)23f(x) = (2x^3 - x^2) \cdot \sqrt[3]{(4x-1)^2}.

a) Find the derivative of f(x)f(x) with respect to xx.

b) Evaluate the derivative at x=2x = 2.

Answer:

a) To find the derivative of f(x)f(x), we will apply the chain rule. Let's break down the function into two parts, denoted as uu and vv:

u(x)=2x3x2u(x) = 2x^3 - x^2

v(x)=(4x1)2v(x) = (4x-1)^2

Now, we can write the function f(x)f(x) as f(x)=u(x)v(x)13f(x) = u(x) \cdot v(x)^{\frac{1}{3}}.

According to the chain rule, the derivative of f(x)f(x) can be calculated using the formula:

dfdx=dudxv(x)13+u(x)dvdx13v(x)23\frac{df}{dx} = \frac{du}{dx} \cdot v(x)^{\frac{1}{3}} + u(x) \cdot \frac{dv}{dx} \cdot \frac{1}{3} \cdot v(x)^{-\frac{2}{3}}

Let's calculate each part individually:

  1. dudx\frac{du}{dx}: Since u(x)=2x3x2u(x) = 2x^3 - x^2, the derivative of uu with respect to xx is:

dudx=6x22x\frac{du}{dx} = 6x^2 - 2x

  1. dvdx\frac{dv}{dx}: We differentiate v(x)=(4x1)2v(x) = (4x-1)^2 by applying the chain rule:

dvdx=2(4x1)4=8(4x1)\frac{dv}{dx} = 2(4x-1) \cdot 4 = 8(4x-1)

Now, let's substitute the derivatives we found back into the chain rule formula:

dfdx=(6x22x)(4x1)13+(2x3x2)8(4x1)3(4x1)23\frac{df}{dx} = (6x^2 - 2x) \cdot (4x-1)^{\frac{1}{3}} + (2x^3 - x^2) \cdot \frac{8(4x-1)}{3} \cdot (4x-1)^{-\frac{2}{3}}

Simplifying, we get:

dfdx=(6x22x)(4x1)13+163(2x3x2)(4x1)23\frac{df}{dx} = (6x^2 - 2x) \cdot (4x-1)^{\frac{1}{3}} + \frac{16}{3} (2x^3 - x^2) \cdot (4x-1)^{-\frac{2}{3}}

b) Now, let's evaluate the derivative at x=2x = 2. Substituting x=2x = 2 into the derivative expression we obtained in part (a):

dfdxx=2=(6(2)22(2))(4(2)1)13+163(2)3(2)2)(4(2)1)23\frac{df}{dx} \Bigr|_{x=2} = (6(2)^2 - 2(2)) \cdot (4(2)-1)^{\frac{1}{3}} + \frac{16}{3} (2)^3 - (2)^2) \cdot (4(2)-1)^{-\frac{2}{3}}

Simplifying the expression:

dfdxx=2=(244)(7)13+163(84)(7)23\frac{df}{dx} \Bigr|_{x=2} = (24 - 4) \cdot (7)^{\frac{1}{3}} + \frac{16}{3} \cdot (8 - 4) \cdot (7)^{-\frac{2}{3}}

Using a calculator, we find:

dfdxx=2=20(7)13+1634(7)23\frac{df}{dx} \Bigr|_{x=2} = 20(7)^{\frac{1}{3}} + \frac{16}{3} \cdot 4 \cdot (7)^{-\frac{2}{3}}

Simplifying further:

dfdxx=2=20(7)13+643(7)23\frac{df}{dx} \Bigr|_{x=2} = 20(7)^{\frac{1}{3}} + \frac{64}{3} (7)^{-\frac{2}{3}}

Hence, the derivative of f(x)f(x) at x=2x = 2 is 20(7)13+643(7)2320(7)^{\frac{1}{3}} + \frac{64}{3} (7)^{-\frac{2}{3}}.