Post

Created by @nathanedwards
 at November 1st 2023, 3:26:01 pm.

Question:

A function f(x) is defined as f(x)=x2+13f(x)=\sqrt[3]{x^2+1}.

(a) Find the linear approximation of f(x) at the point x = 2.

(b) Use the linear approximation to estimate the value of f(2.1) and calculate the maximum error in this estimation.

Answer:

(a) To find the linear approximation of f(x) at the point x = 2, we will begin by finding the equation of the tangent line at x = 2.

  1. Find the derivative of f(x): f(x)=ddx(x2+13)f'(x) = \frac{d}{dx}\left(\sqrt[3]{x^2+1}\right)

Using the chain rule, we have:

f(x)=13(x2+1)2/32xf'(x) = \frac{1}{3}(x^2+1)^{-2/3} \cdot 2x

Simplifying further:

f(x)=2x3(x2+1)2/3f'(x) = \frac{2x}{3(x^2+1)^{2/3}}

  1. Evaluate the derivative at x = 2:

f(2)=223(22+1)2/3f'(2) = \frac{2 \cdot 2}{3(2^2+1)^{2/3}}

f(2)=43(5)2/3f'(2) = \frac{4}{3(5)^{2/3}}

  1. Find the equation of the tangent line using the point-slope form.

The equation of the tangent line at x = 2 will be in the form:

y=f(2)+f(2)(x2)y = f(2) + f'(2)(x-2)

We need to find f(2) to complete our equation.

f(2)=22+13f(2) = \sqrt[3]{2^2+1}

f(2)=53f(2) = \sqrt[3]{5}

So, the equation of the tangent line is:

y=53+43(5)2/3(x2)y = \sqrt[3]{5} + \frac{4}{3(5)^{2/3}}(x-2)

(b) Now, we will use the linear approximation equation we derived in part (a) to estimate the value of f(2.1).

Substituting x = 2.1 into the equation of the tangent line, we have:

f(2.1)53+43(5)2/3(2.12)f(2.1) \approx \sqrt[3]{5} + \frac{4}{3(5)^{2/3}}(2.1-2)

Simplifying:

f(2.1)53+43(5)2/3(0.1)f(2.1) \approx \sqrt[3]{5} + \frac{4}{3(5)^{2/3}}(0.1)

f(2.1)53+430.1(5)2/3f(2.1) \approx \sqrt[3]{5} + \frac{4}{3} \cdot \frac{0.1}{(5)^{2/3}}

Calculating the approximation:

f(2.1)53+430.1523f(2.1) \approx \sqrt[3]{5} + \frac{4}{3} \cdot \frac{0.1}{\sqrt[3]{5^2}}

f(2.1)53+430.1253f(2.1) \approx \sqrt[3]{5} + \frac{4}{3} \cdot \frac{0.1}{\sqrt[3]{25}}

f(2.1)53+430.15353f(2.1) \approx \sqrt[3]{5} + \frac{4}{3} \cdot \frac{0.1}{\sqrt[3]{5} \cdot \sqrt[3]{5}}

f(2.1)53+430.15352/3f(2.1) \approx \sqrt[3]{5} + \frac{4}{3} \cdot \frac{0.1}{\sqrt[3]{5} \cdot 5^{2/3}}

Calculating the value:

f(2.1)53+430.15352/31.8172f(2.1) \approx \sqrt[3]{5} + \frac{4}{3} \cdot \frac{0.1}{\sqrt[3]{5} \cdot 5^{2/3}} \approx 1.8172

To calculate the maximum error in this estimation, we can use the formula for the error of a linear approximation:

Error=f(x)L(x)Error = |f(x) - L(x)|

where f(x) is the original function and L(x) is the linear approximation.

For f(x) = x2+13\sqrt[3]{x^2+1} and L(x) = 53+43(5)2/3(x2)\sqrt[3]{5} + \frac{4}{3(5)^{2/3}}(x-2), we can find the maximum error by calculating:

Error=f(2.1)L(2.1)Error = \left| f(2.1) - L(2.1)\right|

Substituting the values, we have:

Error=2.12+13(53+43(5)2/3(2.12))Error = \left| \sqrt[3]{2.1^2+1} - \left(\sqrt[3]{5} + \frac{4}{3(5)^{2/3}}(2.1-2)\right)\right|

Error=4.41+13(53+43(5)2/3(0.1))Error = \left| \sqrt[3]{4.41+1} - \left(\sqrt[3]{5} + \frac{4}{3(5)^{2/3}}(0.1)\right)\right|

Error=5.413(53+43(5)2/3(0.1))Error = \left| \sqrt[3]{5.41} - \left(\sqrt[3]{5} + \frac{4}{3(5)^{2/3}}(0.1)\right)\right|

Error1.84361.81720.0264Error \approx | 1.8436 - 1.8172| \approx 0.0264

Therefore, the estimated value of f(2.1) using the linear approximation is approximately 1.8172 with a maximum error of approximately 0.0264.