AP Calculus AB Exam Question
Consider the function f(x) defined by:
f(x)=2x3−5x2+3x+4over the interval [0,2].
(a) Find the average value of f(x) over the interval [0,2].
(b) Find the x-coordinate(s) at which the average value of f(x) occurs over the interval [0,2].
Answer
(a) The average value of a function f(x) over an interval [a,b] is given by the formula:
Average value of f(x)=b−a1∫abf(x)dxFor our function f(x) and the interval [0,2], we have:
Average value of f(x)=2−01∫02(2x3−5x2+3x+4)dxIntegrating term by term, we get:
21[42x4−35x3+23x2+4x]02Simplifying and substituting the upper and lower limits, we have:
21[42(24)−35(23)+23(22)+4(2)]−21[42(04)−35(03)+23(02)+4(0)]21[42(16)−35(8)+23(4)+8]−21[42(0)−35(0)+23(0)+0]21[216−340+6+8]−21[0−0+0+0]21[216−340+6+8]21[8−340+6+8]21[324−340+18+24]21[324−40+54+72]21[3110]Average value of f(x)=355Hence, the average value of f(x) over the interval [0,2] is 355.
(b) To find the x-coordinate(s) at which the average value of f(x) occurs over the interval [0,2], we set up the equation:
2−01∫02(2x3−5x2+3x+4)dx=35521[42x4−35x3+23x2+4x]02=355Applying the Fundamental Theorem of Calculus, we have:
21[42(24)−35(23)+23(22)+4(2)]−21[42(04)−35(03)+23(02)+4(0)]=355Simplifying and evaluating the integrals, we have:
21[42(16)−35(8)+23(4)+8]−21[42(0)−35(0)+23(0)+0]=35521[216−340+6+8]−21[0−0+0+0]=35521[324−340+18+24]=35521[324−40+54+72]=35521[3110]=3556110=355Therefore, the x-coordinate(s) at which the average value of f(x) occurs over the interval [0,2] is 2.
In summary, the average value of the function f(x) over the interval [0,2] is 355, and it occurs at the x-coordinate 2.