Question:
Let f(x)=2x3−4x3x2+5x−2.
a) Find f′(x) using the product rule.
b) Find f′(x) using the quotient rule.
c) Evaluate f′(2).
Answer:
a) To find f′(x) using the product rule, we need to differentiate the numerator and denominator separately. Then, we can apply the product rule formula.
Given that f(x)=2x3−4x3x2+5x−2, we have:
f′(x)=(2x3−4x)2(3x2+5x−2)′(2x3−4x)−(3x2+5x−2)(2x3−4x)′
Differentiating the numerator and denominator separately:
(3x2+5x−2)′=6x+5
(2x3−4x)′=6x2−4
Substituting these values into the product rule formula:
f′(x)=(2x3−4x)2(6x+5)(2x3−4x)−(3x2+5x−2)(6x2−4)
Simplifying the expression:
f′(x)=(2x3−4x)212x4−24x2+10x3−20x−18x3+30x2−12x−24x+8
f′(x)=(2x3−4x)212x4−8x3+6x2−56x+8
b) To find f′(x) using the quotient rule, we can directly apply the formula:
Given that f(x)=2x3−4x3x2+5x−2, we have:
f′(x)=(2x3−4x)2(3x2+5x−2)′(2x3−4x)−(3x2+5x−2)(2x3−4x)′
Differentiating the numerator and denominator separately:
(3x2+5x−2)′=6x+5
(2x3−4x)′=6x2−4
Substituting these values into the quotient rule formula:
f′(x)=(2x3−4x)2(6x+5)(2x3−4x)−(3x2+5x−2)(6x2−4)
Simplifying the expression:
f′(x)=(2x3−4x)212x4−24x2+10x3−20x−18x3+30x2−12x−24x+8
f′(x)=(2x3−4x)212x4−8x3+6x2−56x+8
c) To find f′(2), we substitute x=2 into the derivative f′(x) obtained using either the product rule or the quotient rule.
Using the derivative obtained using the quotient rule:
f′(2)=(2(2)3−4(2))212(2)4−8(2)3+6(2)2−56(2)+8
f′(2)=(16−8)2192−64+24−112+8
f′(2)=6448
Simplifying the expression, we get:
f′(2)=43
Therefore, f′(2)=43.