Post

Created by @nathanedwards
 at October 31st 2023, 5:44:13 am.

Question:

Let f(x)=3x2+5x22x34xf(x) = \frac{3x^2 + 5x - 2}{2x^3 - 4x}.

a) Find f(x)f'(x) using the product rule.

b) Find f(x)f'(x) using the quotient rule.

c) Evaluate f(2)f'(2).

Answer:

a) To find f(x)f'(x) using the product rule, we need to differentiate the numerator and denominator separately. Then, we can apply the product rule formula.

Given that f(x)=3x2+5x22x34xf(x) = \frac{3x^2 + 5x - 2}{2x^3 - 4x}, we have:

f(x)=(3x2+5x2)(2x34x)(3x2+5x2)(2x34x)(2x34x)2f'(x) = \frac{(3x^2 + 5x - 2)'(2x^3 - 4x) - (3x^2 + 5x - 2)(2x^3 - 4x)'}{(2x^3 - 4x)^2}

Differentiating the numerator and denominator separately:

(3x2+5x2)=6x+5(3x^2 + 5x - 2)' = 6x + 5

(2x34x)=6x24(2x^3 - 4x)' = 6x^2 - 4

Substituting these values into the product rule formula:

f(x)=(6x+5)(2x34x)(3x2+5x2)(6x24)(2x34x)2f'(x) = \frac{(6x + 5)(2x^3 - 4x) - (3x^2 + 5x - 2)(6x^2 - 4)}{(2x^3 - 4x)^2}

Simplifying the expression:

f(x)=12x424x2+10x320x18x3+30x212x24x+8(2x34x)2f'(x) = \frac{12x^4 - 24x^2 + 10x^3 - 20x - 18x^3 + 30x^2 - 12x - 24x + 8}{(2x^3 - 4x)^2}

f(x)=12x48x3+6x256x+8(2x34x)2f'(x) = \frac{12x^4 - 8x^3 + 6x^2 - 56x + 8}{(2x^3 - 4x)^2}

b) To find f(x)f'(x) using the quotient rule, we can directly apply the formula:

Given that f(x)=3x2+5x22x34xf(x) = \frac{3x^2 + 5x - 2}{2x^3 - 4x}, we have:

f(x)=(3x2+5x2)(2x34x)(3x2+5x2)(2x34x)(2x34x)2f'(x) = \frac{(3x^2 + 5x - 2)'(2x^3 - 4x) - (3x^2 + 5x - 2)(2x^3 - 4x)'}{(2x^3 - 4x)^2}

Differentiating the numerator and denominator separately:

(3x2+5x2)=6x+5(3x^2 + 5x - 2)' = 6x + 5

(2x34x)=6x24(2x^3 - 4x)' = 6x^2 - 4

Substituting these values into the quotient rule formula:

f(x)=(6x+5)(2x34x)(3x2+5x2)(6x24)(2x34x)2f'(x) = \frac{(6x + 5)(2x^3 - 4x) - (3x^2 + 5x - 2)(6x^2 - 4)}{(2x^3 - 4x)^2}

Simplifying the expression:

f(x)=12x424x2+10x320x18x3+30x212x24x+8(2x34x)2f'(x) = \frac{12x^4 - 24x^2 + 10x^3 - 20x - 18x^3 + 30x^2 - 12x - 24x + 8}{(2x^3 - 4x)^2}

f(x)=12x48x3+6x256x+8(2x34x)2f'(x) = \frac{12x^4 - 8x^3 + 6x^2 - 56x + 8}{(2x^3 - 4x)^2}

c) To find f(2)f'(2), we substitute x=2x = 2 into the derivative f(x)f'(x) obtained using either the product rule or the quotient rule.

Using the derivative obtained using the quotient rule:

f(2)=12(2)48(2)3+6(2)256(2)+8(2(2)34(2))2f'(2) = \frac{12(2)^4 - 8(2)^3 + 6(2)^2 - 56(2) + 8}{(2(2)^3 - 4(2))^2}

f(2)=19264+24112+8(168)2f'(2) = \frac{192 - 64 + 24 - 112 + 8}{(16 - 8)^2}

f(2)=4864f'(2) = \frac{48}{64}

Simplifying the expression, we get:

f(2)=34f'(2) = \frac{3}{4}

Therefore, f(2)=34f'(2) = \frac{3}{4}.