Post

Created by @nathanedwards
 at October 31st 2023, 9:26:52 pm.

Question:

Let f(x)=3x35x2+2xx2x+3f(x) = \frac{{3x^3 - 5x^2 + 2x}}{{x^2 - x + 3}}. Use the product and quotient rules to find the derivative of f(x)f(x). Show all your work clearly and simplify the results.

Answer:

To find the derivative of the function f(x)=3x35x2+2xx2x+3f(x) = \frac{{3x^3 - 5x^2 + 2x}}{{x^2 - x + 3}}, we will use the product and quotient rules. Let's compute it step by step:

Step 1: Find the derivative of the numerator and denominator separately. Using the product rule, we have:

ddx(3x35x2+2x)=(3)(3x2)+(2)(5x)+(2)(1)\frac{{d}}{{dx}}(3x^3 - 5x^2 + 2x) = (3)(3x^2) + (-2)(5x) + (2)(1)

Simplifying, we get: 9x210x+29x^2 - 10x + 2

Similarly, finding the derivative of the denominator (x2x+3)(x^2 - x + 3), we get:

ddx(x2x+3)=(2x1)\frac{{d}}{{dx}}(x^2 - x + 3) = (2x - 1)

Step 2: Apply the quotient rule. The quotient rule states that if f(x)=g(x)h(x)f(x) = \frac{{g(x)}}{{h(x)}}, then f(x)=g(x)h(x)g(x)h(x)(h(x))2f'(x) = \frac{{g'(x) \cdot h(x) - g(x) \cdot h'(x)}}{{(h(x))^2}}. Applying this to our function f(x)f(x), we have:

f(x)=(9x210x+2)(x2x+3)(3x35x2+2x)(2x1)(x2x+3)2f'(x) = \frac{{(9x^2 - 10x + 2)(x^2 - x + 3) - (3x^3 - 5x^2 + 2x)(2x - 1)}}{{(x^2 - x + 3)^2}}

Now let's simplify this expression.

Expanding the numerator:

(9x210x+2)(x2x+3)=9x418x3+7x228x+6(9x^2 - 10x + 2)(x^2 - x + 3) = 9x^4 - 18x^3 + 7x^2 - 28x + 6

(3x35x2+2x)(2x1)=6x411x3+3x22x(3x^3 - 5x^2 + 2x)(2x - 1) = 6x^4 - 11x^3 + 3x^2 - 2x

Substituting these values back into the expression:

f(x)=(9x418x3+7x228x+6)(6x411x3+3x22x)(x2x+3)2f'(x) = \frac{{(9x^4 - 18x^3 + 7x^2 - 28x + 6) - (6x^4 - 11x^3 + 3x^2 - 2x)}}{{(x^2 - x + 3)^2}}

Simplifying further:

f(x)=9x418x3+7x228x+66x4+11x33x2+2x(x2x+3)2f'(x) = \frac{{9x^4 - 18x^3 + 7x^2 - 28x + 6 - 6x^4 + 11x^3 - 3x^2 + 2x}}{{(x^2 - x + 3)^2}}

Combining like terms:

f(x)=3x47x3+4x226x+6(x2x+3)2f'(x) = \frac{{3x^4 - 7x^3 + 4x^2 - 26x + 6}}{{(x^2 - x + 3)^2}}

Therefore, the derivative of f(x)f(x) is 3x47x3+4x226x+6(x2x+3)2\frac{{3x^4 - 7x^3 + 4x^2 - 26x + 6}}{{(x^2 - x + 3)^2}}.