Post

Created by @nathanedwards
 at October 31st 2023, 5:12:28 pm.

AP Calculus AB Exam Question:

Find the antiderivative of the function:

f(x)=x3e2x f(x) = x^3e^{2x}

Solution:

To find the antiderivative of the function f(x)=x3e2xf(x) = x^3e^{2x}, we will use integration by parts method.

Integration by parts formula states:

udv=uvvdu \int u \, dv = uv - \int v \, du

where uu and vv are differentiable functions.

Let's choose:

u=x3du=3x2dx u = x^3 \quad \Rightarrow \quad du = 3x^2 \, dx
dv=e2xdxv=12e2x dv = e^{2x} \, dx \quad \Rightarrow \quad v = \frac{1}{2}e^{2x}

Now, we can use the integration by parts formula to find the antiderivative:

x3e2xdx=12x3e2x12e2x3x2dx=12x3e2x32x2e2xdx \begin{align*} \int x^3e^{2x} \, dx &= \frac{1}{2}x^3e^{2x} - \int \frac{1}{2}e^{2x} \cdot 3x^2 \, dx \\ &= \frac{1}{2}x^3e^{2x} - \frac{3}{2} \int x^2e^{2x} \, dx \end{align*}

We now have another integral with the same form, but one degree lower. We will apply integration by parts again to evaluate it.

Choosing:

u=x2du=2xdx u = x^2 \quad \Rightarrow \quad du = 2x \, dx
dv=e2xdxv=12e2x dv = e^{2x} \, dx \quad \Rightarrow \quad v = \frac{1}{2}e^{2x}

we get:

x3e2xdx=12x3e2x32(12x2e2x12e2x2xdx)=12x3e2x32(12x2e2x12e2x2xdx)=12x3e2x34x2e2x+34e2x2xdx \begin{align*} \int x^3e^{2x} \, dx &= \frac{1}{2}x^3e^{2x} - \frac{3}{2} \left(\frac{1}{2}x^2e^{2x} - \int \frac{1}{2}e^{2x} \cdot 2x \, dx\right) \\ &= \frac{1}{2}x^3e^{2x} - \frac{3}{2}\left(\frac{1}{2}x^2e^{2x} - \frac{1}{2} \int e^{2x} \cdot 2x \, dx\right) \\ &= \frac{1}{2}x^3e^{2x} - \frac{3}{4}x^2e^{2x} + \frac{3}{4} \int e^{2x} \cdot 2x \, dx \\ \end{align*}

At this point, we have a new integral:

e2x2xdx \int e^{2x} \cdot 2x \, dx

We can apply integration by parts once more:

Choosing:

u=xdu=dx u = x \quad \Rightarrow \quad du = dx
dv=e2xdxv=12e2x dv = e^{2x} \, dx \quad \Rightarrow \quad v = \frac{1}{2}e^{2x}

we get:

12x3e2x34x2e2x+34e2x2xdx=12x3e2x34x2e2x+34(12xe2x12e2xdx)=12x3e2x34x2e2x+34(12xe2x12e2xdx) \begin{align*} \frac{1}{2}x^3e^{2x} - \frac{3}{4}x^2e^{2x} + \frac{3}{4} \int e^{2x} \cdot 2x \, dx &= \frac{1}{2}x^3e^{2x} - \frac{3}{4}x^2e^{2x} + \frac{3}{4} \left(\frac{1}{2}x\cdot e^{2x} - \int \frac{1}{2}e^{2x} \, dx\right) \\ &= \frac{1}{2}x^3e^{2x} - \frac{3}{4}x^2e^{2x} + \frac{3}{4} \left(\frac{1}{2}x\cdot e^{2x} - \frac{1}{2}\int e^{2x} \, dx\right) \\ \end{align*}

The integral remaining, e2xdx\int e^{2x} \, dx, is a simple integration:

e2xdx=12e2x \int e^{2x} \, dx = \frac{1}{2}e^{2x}

Substituting this back into the previous equation, we get:

12x3e2x34x2e2x+14xe2x38e2x+C \begin{align*} \frac{1}{2}x^3e^{2x} - \frac{3}{4}x^2e^{2x} + \frac{1}{4}x\cdot e^{2x} - \frac{3}{8}e^{2x} + C \end{align*}

Therefore, the antiderivative of f(x)=x3e2xf(x) = x^3e^{2x} is:

F(x)=12x3e2x34x2e2x+14xe2x38e2x+C F(x) = \frac{1}{2}x^3e^{2x} - \frac{3}{4}x^2e^{2x} + \frac{1}{4}x\cdot e^{2x} - \frac{3}{8}e^{2x} + C

where CC is the constant of integration.