Post

Created byΒ @nathanedwards
Β at October 31st 2023, 5:55:28 pm.

Question:

Let 𝑓(π‘₯) = (2π‘₯^3 + π‘₯^2)(π‘₯^2 βˆ’ 3π‘₯).

a) Find 𝑓'(π‘₯) using the product rule.

b) Find 𝑔(π‘₯) = (π‘₯^3 βˆ’ 2π‘₯)/(π‘₯^2 + 5).

c) Find 𝑔'(π‘₯) using the quotient rule.

Answer:

a) Find f'(π‘₯) using the product rule:

To find the derivative of 𝑓(π‘₯), we will use the product rule. The product rule states that the derivative of a product of two functions, 𝑒(π‘₯) and 𝑣(π‘₯), is given by:

(𝑒𝑣)' = 𝑒'𝑣 + 𝑒𝑣'

Let's use this rule to find the derivative of 𝑓(π‘₯):

𝑓(π‘₯) = (2π‘₯^3 + π‘₯^2)(π‘₯^2 βˆ’ 3π‘₯)

To simplify this expression, expand it out:

𝑓(π‘₯) = 2π‘₯^5 βˆ’ 6π‘₯^4 + π‘₯^4 βˆ’ 3π‘₯^3

Combine like terms:

𝑓(π‘₯) = 2π‘₯^5 βˆ’ 5π‘₯^4 βˆ’ 3π‘₯^3

Now, we can differentiate 𝑓(π‘₯) term by term:

𝑓'(π‘₯) = d/dπ‘₯ (2π‘₯^5 βˆ’ 5π‘₯^4 βˆ’ 3π‘₯^3)

Applying the power rule, we get:

𝑓'(π‘₯) = 10π‘₯^4 βˆ’ 20π‘₯^3 βˆ’ 9π‘₯^2

Therefore, the derivative of 𝑓(π‘₯) using the product rule is 𝑓'(π‘₯) = 10π‘₯^4 βˆ’ 20π‘₯^3 βˆ’ 9π‘₯^2.

b) Find 𝑔(π‘₯) using the quotient rule:

To find the function 𝑔(π‘₯), we need to perform division. Let 𝑔(π‘₯) = (π‘₯^3 βˆ’ 2π‘₯)/(π‘₯^2 + 5).

The quotient rule states that the derivative of a quotient of two functions, 𝑒(π‘₯) and 𝑣(π‘₯), is given by:

(𝑒/𝑣)' = (𝑒'𝑣 βˆ’ 𝑒𝑣')/𝑣^2

Let's differentiate 𝑔(π‘₯) using the quotient rule:

𝑔(π‘₯) = (π‘₯^3 βˆ’ 2π‘₯)/(π‘₯^2 + 5)

To simplify this expression, expand the numerator:

𝑔(π‘₯) = (π‘₯^3 βˆ’ 2π‘₯)/(π‘₯^2 + 5)

Differentiate the numerator and the denominator:

𝑔'(π‘₯) = ((3π‘₯^2)(π‘₯^2 + 5) - (π‘₯^3 βˆ’ 2π‘₯)(2π‘₯))/(π‘₯^2 + 5)^2

Simplify the expression in the numerator:

𝑔'(π‘₯) = (3π‘₯^4 + 15π‘₯^2 - 2π‘₯^4 + 4π‘₯^2)/(π‘₯^2 + 5)^2

Combine like terms:

𝑔'(π‘₯) = (π‘₯^4 + 19π‘₯^2)/(π‘₯^2 + 5)^2

Thus, the derivative of 𝑔(π‘₯) using the quotient rule is 𝑔'(π‘₯) = (π‘₯^4 + 19π‘₯^2)/(π‘₯^2 + 5)^2.