Post

Created by @nathanedwards
 at November 1st 2023, 8:07:39 am.

AP Calculus AB Exam Question:

Consider the function f(x) given by [ f(x) = x^3 - 4x^2 + 5x - 2 ]. Let R be the region bounded by the x-axis and the curve f(x) in the interval [ 0 \leq x \leq 2 ].

a) Find the exact area of region R.

b) The line y = -2 intersects the curve f(x) at two points. Find the coordinates of these points.

c) Calculate the exact volume of the solid generated when the region R is revolved about the x-axis.

Answer:

a) To find the exact area of region R, we need to compute the definite integral of f(x) from 0 to 2:

02(x34x2+5x2)dx \int_0^2 (x^3 - 4x^2 + 5x - 2) dx

First, we find the antiderivative F(x) of f(x):

F(x)=x444x33+5x222x+C F(x) = \frac{x^4}{4} - \frac{4x^3}{3} + \frac{5x^2}{2} - 2x + C

Applying the Fundamental Theorem of Calculus, we have:

02(x34x2+5x2)dx=F(2)F(0) \int_0^2 (x^3 - 4x^2 + 5x - 2) dx = F(2) - F(0)

Plugging in the values, we get:

02(x34x2+5x2)dx=(2444(23)3+5(22)22(2))(0444(03)3+5(02)22(0)) \int_0^2 (x^3 - 4x^2 + 5x - 2) dx = (\frac{2^4}{4} - \frac{4(2^3)}{3} + \frac{5(2^2)}{2} - 2(2)) - (\frac{0^4}{4} - \frac{4(0^3)}{3} + \frac{5(0^2)}{2} - 2(0))

Simplifying further:

02(x34x2+5x2)dx=(164323+2024)(00+00)=4323+104=143 \int_0^2 (x^3 - 4x^2 + 5x - 2) dx = (\frac{16}{4} - \frac{32}{3} + \frac{20}{2} - 4) - (0 - 0 + 0 - 0) = 4 - \frac{32}{3} + 10 - 4 = \frac{14}{3}

Therefore, the exact area of region R is [ \frac{14}{3} ].

b) To find the coordinates of the points where the line y = -2 intersects the curve f(x), we set f(x) equal to -2:

x34x2+5x2=2 x^3 - 4x^2 + 5x - 2 = -2

Simplifying the equation:

x34x2+5x=0 x^3 - 4x^2 + 5x = 0

Factoring out an x:

x(x24x+5)=0 x(x^2 - 4x + 5) = 0

This equation is satisfied when x = 0 and when the quadratic equation x^2 - 4x + 5 = 0 has real roots. Using the quadratic formula, we find:

x=(4)±(4)24(1)(5)2(1) x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(5)}}{2(1)}
x=4±16202 x = \frac{4 \pm \sqrt{16 - 20}}{2}
x=4±42 x = \frac{4 \pm \sqrt{-4}}{2}
x=4±2i2 x = \frac{4 \pm 2i}{2}

Since we are looking for real roots, there are no intersection points between y = -2 and the curve f(x). Hence, there are no coordinates to be found.

c) To find the exact volume of the solid generated when the region R is revolved about the x-axis, we use the disc method. The volume V is given by:

V=π02[f(x)]2dx V = \pi \int_0^2 [f(x)]^2 dx

We substitute f(x) into the equation:

V=π02[(x34x2+5x2)2]dx V = \pi \int_0^2 [(x^3 - 4x^2 + 5x - 2)^2] dx

Expanding and simplifying the equation:

V=π02(x68x5+24x432x3+20x24x+4)dx V = \pi \int_0^2 (x^6 - 8x^5 + 24x^4 - 32x^3 + 20x^2 - 4x + 4) dx
V=π[x778x66+24x5532x44+20x334x22+4x]02 V = \pi \left[ \frac{x^7}{7} - \frac{8x^6}{6} + \frac{24x^5}{5} - \frac{32x^4}{4} + \frac{20x^3}{3} - \frac{4x^2}{2} + 4x \right]_0^2

Applying the limits:

V=π[2778(26)6+24(25)532(24)4+20(23)34(22)2+4(2)]π[0778(06)6+24(05)532(04)4+20(03)34(02)2+4(0)] V = \pi \left[ \frac{2^7}{7} - \frac{8(2^6)}{6} + \frac{24(2^5)}{5} - \frac{32(2^4)}{4} + \frac{20(2^3)}{3} - \frac{4(2^2)}{2} + 4(2) \right] - \pi \left[ \frac{0^7}{7} - \frac{8(0^6)}{6} + \frac{24(0^5)}{5} - \frac{32(0^4)}{4} + \frac{20(0^3)}{3} - \frac{4(0^2)}{2} + 4(0) \right]

Simplifying further:

V=π[12871283+192532+16038+8]π[00+00+00+0] V = \pi \left[ \frac{128}{7} - \frac{128}{3} + \frac{192}{5} - 32 + \frac{160}{3} - 8 + 8 \right] - \pi \left[ 0 - 0 + 0 - 0 + 0 - 0 + 0 \right]
V=π[128738421+3843532+16038+8] V = \pi \left[ \frac{128}{7} - \frac{384}{21} + \frac{384}{35} - 32 + \frac{160}{3} - 8 + 8 \right]
V=π[12871808105+1372824532+1603] V = \pi \left[ \frac{128}{7} - \frac{1808}{105} + \frac{13728}{245} - 32 + \frac{160}{3} \right]
V=π[1830401715] V = \pi \left[ \frac{183040}{1715} \right]

Hence, the exact volume of the solid generated when the region R is revolved about the x-axis is [ \frac{183040}{1715}\pi ].