Post

Created by @nathanedwards
 at October 31st 2023, 10:17:20 pm.

AP Calculus AB Exam Question:

Let f(x)f(x) and g(x)g(x) be differentiable functions such that f(x)=2x3x2+4xf(x) = 2x^3 - x^2 + 4x and g(x)=e3xg(x) = e^{3x}.

a) Find f(x)f'(x) and g(x)g'(x).

b) Use the chain rule to find ddx(fg)(x)\frac{d}{dx} (f \circ g)(x).

c) Evaluate ddx(fg)(2)\frac{d}{dx} (f \circ g)(2).


Solution:

a) To find f(x)f'(x), we differentiate f(x)f(x) term by term:

f(x)=2x3x2+4xf(x) = 2x^3 - x^2 + 4x

f(x)=ddx(2x3)ddx(x2)+ddx(4x)f'(x) = \frac{d}{dx} (2x^3) - \frac{d}{dx} (x^2) + \frac{d}{dx} (4x)

Using the power rule, we have:

f(x)=6x22x+4f'(x) = 6x^2 - 2x + 4

Now let's find g(x)g'(x) using the chain rule. Since g(x)=e3xg(x) = e^{3x}, we have ddxg(x)=ddxe3x\frac{d}{dx} g(x) = \frac{d}{dx} e^{3x}:

ddxg(x)=3e3x\frac{d}{dx} g(x) = 3e^{3x}

b) The chain rule states that if y=f(g(x))y = f(g(x)), then dydx=dydududx\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}.

Applying the chain rule to (fg)(x)(f \circ g)(x), we have:

ddx(fg)(x)=f(g(x))g(x)\frac{d}{dx}(f \circ g)(x) = f'(g(x)) \cdot g'(x)

We already found f(x)f'(x) and g(x)g'(x) in part a), so substituting those values we get:

ddx(fg)(x)=(6g2(x)2g(x)+4)g(x)\frac{d}{dx}(f \circ g)(x) = (6g^2(x) - 2g(x) + 4) \cdot g'(x)

Since g(x)=e3xg(x) = e^{3x} and g(x)=3e3xg'(x) = 3e^{3x}, we can substitute these values:

ddx(fg)(x)=(6(e3x)22(e3x)+4)3e3x\frac{d}{dx}(f \circ g)(x) = (6(e^{3x})^2 - 2(e^{3x}) + 4) \cdot 3e^{3x}

Simplifying further:

ddx(fg)(x)=(6e6x2e3x+4)3e3x\frac{d}{dx}(f \circ g)(x) = (6e^{6x} - 2e^{3x} + 4) \cdot 3e^{3x}

c) To evaluate ddx(fg)(2)\frac{d}{dx}(f \circ g)(2), we substitute x=2x=2 into the expression for ddx(fg)(x)\frac{d}{dx}(f \circ g)(x):

ddx(fg)(2)=(6e6(2)2e3(2)+4)3e3(2)\frac{d}{dx}(f \circ g)(2) = (6e^{6(2)} - 2e^{3(2)} + 4) \cdot 3e^{3(2)}

Simplifying further:

ddx(fg)(2)=(6e122e6+4)3e6\frac{d}{dx}(f \circ g)(2) = (6e^{12} - 2e^6 + 4) \cdot 3e^6

Since ee is a constant, we can evaluate the expression numerically:

ddx(fg)(2)(6162754.79142403.4288+4)3403.4288\frac{d}{dx}(f \circ g)(2) \approx (6 \cdot 162754.7914 - 2 \cdot 403.4288 + 4) \cdot 3 \cdot 403.4288

ddx(fg)(2)976528.7484\frac{d}{dx}(f \circ g)(2) \approx 976528.7484

Therefore, ddx(fg)(2)976528.7484\frac{d}{dx}(f \circ g)(2) \approx 976528.7484.

Answer: ddx(fg)(2)976528.7484\frac{d}{dx}(f \circ g)(2) \approx 976528.7484