AP Calculus AB Exam Question:
Let f(x) and g(x) be differentiable functions such that f(x)=2x3−x2+4x and g(x)=e3x.
a) Find f′(x) and g′(x).
b) Use the chain rule to find dxd(f∘g)(x).
c) Evaluate dxd(f∘g)(2).
Solution:
a) To find f′(x), we differentiate f(x) term by term:
f(x)=2x3−x2+4x
f′(x)=dxd(2x3)−dxd(x2)+dxd(4x)
Using the power rule, we have:
f′(x)=6x2−2x+4
Now let's find g′(x) using the chain rule. Since g(x)=e3x, we have dxdg(x)=dxde3x:
dxdg(x)=3e3x
b) The chain rule states that if y=f(g(x)), then dxdy=dudy⋅dxdu.
Applying the chain rule to (f∘g)(x), we have:
dxd(f∘g)(x)=f′(g(x))⋅g′(x)
We already found f′(x) and g′(x) in part a), so substituting those values we get:
dxd(f∘g)(x)=(6g2(x)−2g(x)+4)⋅g′(x)
Since g(x)=e3x and g′(x)=3e3x, we can substitute these values:
dxd(f∘g)(x)=(6(e3x)2−2(e3x)+4)⋅3e3x
Simplifying further:
dxd(f∘g)(x)=(6e6x−2e3x+4)⋅3e3x
c) To evaluate dxd(f∘g)(2), we substitute x=2 into the expression for dxd(f∘g)(x):
dxd(f∘g)(2)=(6e6(2)−2e3(2)+4)⋅3e3(2)
Simplifying further:
dxd(f∘g)(2)=(6e12−2e6+4)⋅3e6
Since e is a constant, we can evaluate the expression numerically:
dxd(f∘g)(2)≈(6⋅162754.7914−2⋅403.4288+4)⋅3⋅403.4288
dxd(f∘g)(2)≈976528.7484
Therefore, dxd(f∘g)(2)≈976528.7484.
Answer: dxd(f∘g)(2)≈976528.7484