Post

Created by @nathanedwards
 at October 31st 2023, 5:08:18 pm.

AP Calculus AB Exam Question

Let f(x)=x32x2+5x3 f(x) = x^3 - 2x^2 + 5x - 3 be a differentiable function. Find the derivative of f(x) f(x) using the definition of the derivative.

Solution

The derivative of a function f(x) f(x) at a point x=a x = a is defined as:

f(a)=limh0f(a+h)f(a)h f'(a) = \lim_{{h \to 0}} \frac{{f(a+h) - f(a)}}{h}

To find the derivative of f(x)=x32x2+5x3 f(x) = x^3 - 2x^2 + 5x - 3 , we need to evaluate this limit. Let's start by applying the definition of the derivative.

f(a)=limh0f(a+h)f(a)h=limh0(a+h)32(a+h)2+5(a+h)3(a32a2+5a3)h f'(a) = \lim_{{h \to 0}} \frac{{f(a+h) - f(a)}}{h} = \lim_{{h \to 0}} \frac{{(a+h)^3 - 2(a+h)^2 + 5(a+h) - 3 - (a^3 - 2a^2 + 5a - 3)}}{h}

Expanding the numerator, we have:

f(a)=limh0a3+3a2h+3ah2+h32(a2+2ah+h2)+5(a+h)3a3+2a25a+3h f'(a) = \lim_{{h \to 0}} \frac{{a^3 + 3a^2h + 3ah^2 + h^3 - 2(a^2 + 2ah + h^2) + 5(a+h) - 3 - a^3 + 2a^2 - 5a + 3}}{h}

Notice that many terms will cancel out:

f(a)=limh03a2h+3ah2+h32ah2h2+5hh f'(a) = \lim_{{h \to 0}} \frac{{3a^2h + 3ah^2 + h^3 - 2ah - 2h^2 + 5h}}{h}

Simplifying further:

f(a)=limh0h(3a2+3ah+h22a2h+5)h f'(a) = \lim_{{h \to 0}} \frac{{h(3a^2 + 3ah + h^2 - 2a - 2h + 5)}}{h}

As h h approaches 0, we can cancel out the h h from the numerator and denominator:

f(a)=limh0(3a2+3ah+h22a2h+5) f'(a) = \lim_{{h \to 0}} (3a^2 + 3ah + h^2 - 2a - 2h + 5)

Since all terms in the limit are continuous, we can substitute h=0 h = 0 directly:

f(a)=3a2+0+02a0+5 f'(a) = 3a^2 + 0 + 0 - 2a - 0 + 5

Simplifying further, we get:

f(a)=3a22a+5 f'(a) = 3a^2 - 2a + 5

Therefore, the derivative of the function f(x)=x32x2+5x3 f(x) = x^3 - 2x^2 + 5x - 3 is f(x)=3x22x+5 f'(x) = 3x^2 - 2x + 5 .