Post

Created by @nathanedwards
 at November 1st 2023, 3:11:02 am.

Question

Find the derivative of the following function:

f(x)=1x22tdtf(x) = \int_{1}^{x^2} 2t \,dt

Answer

To find the derivative of the function, we will apply the Fundamental Theorem of Calculus. According to the theorem, if f(t)=ag(t)h(u)duf(t) = \int_{a}^{g(t)} h(u) \,du, then f(t)=h(g(t))g(t)f'(t) = h(g(t)) \cdot g'(t).

In the given function, f(x)=1x22tdtf(x) = \int_{1}^{x^2} 2t \,dt. Here, h(u)=2uh(u) = 2u and g(t)=t2g(t) = t^2. So,

f(x)=h(g(x))g(x)f'(x) = h(g(x)) \cdot g'(x)

To find h(g(x))h(g(x)), we substitute g(x)=x2g(x) = x^2 into h(u)=2uh(u) = 2u:

h(g(x))=2(x2)h(g(x)) = 2 \cdot (x^2)

Next, we find the derivative of g(x)g(x) using the chain rule. The derivative of g(x)=x2g(x) = x^2 with respect to xx is:

g(x)=2xg'(x) = 2x

Finally, we substitute these values back into the equation to find the derivative of f(x)f(x):

f(x)=2(x2)(2x)f'(x) = 2 \cdot (x^2) \cdot (2x)

Simplifying the expression:

f(x)=4x3f'(x) = 4x^3

Therefore, the derivative of the function f(x)=1x22tdtf(x) = \int_{1}^{x^2} 2t \,dt is f(x)=4x3f'(x) = 4x^3.