Post

Created by @nathanedwards
 at November 3rd 2023, 4:58:10 pm.

AP Calculus AB Exam Question:

A ladder is sliding down a vertical wall. At the instant when the top of the ladder is 10 feet above the ground and sliding at a rate of 2 feet per second, the bottom of the ladder is 8 feet away from the wall and moving towards it at a rate of 3 feet per second.

At this instant, find the rate at which the angle between the ladder and the ground is changing. Round your answer to the nearest hundredth.

Step-by-Step Solution:

Let's label the pertinent variables:

  • Let xx represent the distance between the bottom of the ladder and the wall.
  • Let yy represent the height of the ladder on the wall.
  • Let θ\theta represent the angle between the ladder and the ground.

The problem provides:

  • dxdt=3\frac{{dx}}{{dt}} = -3 ft/s (since the bottom of the ladder is moving towards the wall)
  • dydt=2\frac{{dy}}{{dt}} = -2 ft/s (since the top of the ladder is sliding down)
  • x=8x = 8 ft and y=10y = 10 ft

We need to find dθdt\frac{{d\theta}}{{dt}} when x=8x = 8 ft and y=10y = 10 ft.

Using trigonometric relationships, we know that:

cos(θ)=xx2+y2\cos(\theta) = \frac{{x}}{{\sqrt{{x^2 + y^2}}}} and sin(θ)=yx2+y2\sin(\theta) = \frac{{y}}{{\sqrt{{x^2 + y^2}}}}

Differentiating both sides of these equations with respect to time tt, we obtain:

sin(θ)dθdt=dxdtx2+y2xx2+y2dx2+y2dtx2+y2-\sin(\theta) \cdot \frac{{d\theta}}{{dt}} = \frac{{\frac{{dx}}{{dt}} \cdot \sqrt{{x^2 + y^2}} - \frac{{x}}{{\sqrt{{x^2 + y^2}}}} \cdot \frac{{d\sqrt{{x^2 + y^2}}}}{{dt}}}}{{x^2 + y^2}}

Let's solve for dθdt\frac{{d\theta}}{{dt}} by substituting the given values:

At x=8x = 8 ft and y=10y = 10 ft, we have:

dxdt=3\frac{{dx}}{{dt}} = -3 ft/s dydt=2\frac{{dy}}{{dt}} = -2 ft/s x=8x = 8 ft y=10y = 10 ft

Substituting these values into the equation, we get:

sin(θ)dθdt=382+10286x+8y82+10282+102-\sin(\theta) \cdot \frac{{d\theta}}{{dt}} = \frac{{-3 \cdot \sqrt{{8^2 + 10^2}} - 8 \cdot \frac{{6x + 8y}}{{\sqrt{{8^2 + 10^2}}}}}}{{8^2 + 10^2}}

sin(θ)dθdt=317.08886881017.088164-\sin(\theta) \cdot \frac{{d\theta}}{{dt}} = \frac{{-3 \cdot 17.088 - 8 \cdot \frac{{6 \cdot 8 - 8 \cdot 10}}{{17.088}}}}{{164}}

sin(θ)dθdt=51.26481617.088164-\sin(\theta) \cdot \frac{{d\theta}}{{dt}} = \frac{{-51.264 - 8 \cdot \frac{{-16}}{{17.088}}}}{{164}}

sin(θ)dθdt=51.264+81617.088164-\sin(\theta) \cdot \frac{{d\theta}}{{dt}} = \frac{{-51.264 + 8 \cdot \frac{{16}}{{17.088}}}}{{164}}

sin(θ)dθdt=51.264+12817.088164-\sin(\theta) \cdot \frac{{d\theta}}{{dt}} = \frac{{-51.264 + \frac{{128}}{{17.088}}}}{{164}}

sin(θ)dθdt=51.26412817.088164\sin(\theta) \cdot \frac{{d\theta}}{{dt}} = \frac{{51.264 - \frac{{128}}{{17.088}}}}{{164}}

dθdt=51.26412817.088164sin(θ)\frac{{d\theta}}{{dt}} = \frac{{\frac{{51.264 - \frac{{128}}{{17.088}}}}{{164}}}}{{\sin(\theta)}}

Now, we can determine the value of sin(θ)\sin(\theta) using the right triangle formed by the ladder, wall, and ground:

sin(θ)=yx2+y2=1082+102\sin(\theta) = \frac{{y}}{{\sqrt{{x^2 + y^2}}}} = \frac{{10}}{{\sqrt{{8^2 + 10^2}}}}

sin(θ)=10164\sin(\theta) = \frac{{10}}{{\sqrt{{164}}}}

Now, substituting this value back into the equation, we have:

dθdt=51.26412817.088164÷10164\frac{{d\theta}}{{dt}} = \frac{{51.264 - \frac{{128}}{{17.088}}}}{{164}} \div \frac{{10}}{{\sqrt{{164}}}}

dθdt=51.26412817.08816416410\frac{{d\theta}}{{dt}} = \frac{{51.264 - \frac{{128}}{{17.088}}}}{{164}} \cdot \frac{{\sqrt{{164}}}}{{10}}

dθdt0.218\frac{{d\theta}}{{dt}} \approx 0.218 rad/s (rounded to the nearest hundredth)

Therefore, the rate at which the angle between the ladder and the ground is changing is approximately 0.2180.218 rad/s.