Post

Created byΒ @nathanedwards
Β at November 1st 2023, 1:48:54 am.

Question:

Let 𝑓 be a function defined for π‘₯β‰₯0 by

𝑓(π‘₯)= { (1βˆ’π‘₯)^2 + 2π‘₯𝑠𝑖𝑛π‘₯, if 0≀π‘₯β‰€πœ‹/2,

𝑑/dπ‘₯ [π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™(π‘₯)βˆ’2],  if πœ‹/2<π‘₯.

}

(a) Find the antiderivative 𝐹(π‘₯) of 𝑓(π‘₯) such that 𝐹(0) = 0.

(b) Find the average value of 𝑓 on the interval [0, πœ‹/3].

(c) Find the value of π‘₯ in the interval (0, πœ‹) that satisfies the Mean Value Theorem for Integrals for the function 𝑓 on the interval [0, πœ‹].

Answer:

(a) To find the antiderivative 𝐹(π‘₯) of 𝑓(π‘₯), we need to find the antiderivative of each piece of the function separately.

First, for 0 ≀ π‘₯ ≀ πœ‹/2, we have:

∫[(1βˆ’π‘₯)^2 + 2π‘₯𝑠𝑖𝑛π‘₯]𝑑π‘₯

= ∫(1βˆ’2π‘₯+π‘₯^2)𝑑π‘₯ + ∫2π‘₯𝑠𝑖𝑛π‘₯𝑑π‘₯

Using the power rule for integration, the antiderivative of (1βˆ’2π‘₯+π‘₯^2) with respect to π‘₯ is:

[π‘₯ βˆ’ π‘₯^2/2 + π‘₯^3/3] = (3π‘₯^3 βˆ’ 6π‘₯^2 + 6π‘₯)/6

Using the antiderivative of 2π‘₯𝑠𝑖𝑛π‘₯ with respect to π‘₯, we have:

∫2π‘₯𝑠𝑖𝑛π‘₯𝑑π‘₯ = -2π‘₯π‘π‘œπ‘ π‘₯ + 2𝑠𝑖𝑛π‘₯

So, the antiderivative 𝐹(π‘₯) for 0 ≀ π‘₯ ≀ πœ‹/2 is:

𝐹(π‘₯) = (3π‘₯^3 βˆ’ 6π‘₯^2 + 6π‘₯)/6 - 2π‘₯π‘π‘œπ‘ π‘₯ + 2𝑠𝑖𝑛π‘₯

(b) To find the average value of 𝑓(x) on the interval [0, πœ‹/3], we need to calculate the definite integral and divide by the width of the interval.

The average value 𝐴𝑣𝑔 is given by:

𝐴𝑣𝑔 = 1/π‘βˆ’π‘Ž ∫[𝑓(π‘₯)]𝑑π‘₯

Plugging in the given values, we have:

𝐴𝑣𝑔 = 1/(πœ‹/3βˆ’0) ∫[𝑓(π‘₯)]𝑑π‘₯ = 3/πœ‹ ∫[𝑓(π‘₯)]𝑑π‘₯

Substituting 𝐹(π‘₯) from part (a), we have:

𝐴𝑣𝑔 = 3/πœ‹ ∫[𝐹(π‘₯)]𝑑π‘₯

Now, we can evaluate the definite integral:

∫[𝐹(π‘₯)]𝑑π‘₯ = ∫[(3π‘₯^3 βˆ’ 6π‘₯^2 + 6π‘₯)/6 - 2π‘₯π‘π‘œπ‘ π‘₯ + 2𝑠𝑖𝑛π‘₯]𝑑π‘₯

= [(π‘₯^4)/2 βˆ’ 2π‘₯^3/3 + 3π‘₯^2/2 + 2π‘₯𝑠𝑖𝑛π‘₯ + 2π‘π‘œπ‘ π‘₯] + 𝐢

Using the limits of integration, the average value of 𝑓 on the interval [0, πœ‹/3] is:

𝐴𝑣𝑔 = 3/πœ‹ [(πœ‹/3)^4/2 βˆ’ 2(πœ‹/3)^3/3 + 3(πœ‹/3)^2/2 + 2(πœ‹/3)𝑠𝑖𝑛(πœ‹/3) + 2π‘π‘œπ‘ (πœ‹/3)] + 𝐢

(c) According to the Mean Value Theorem for Integrals, there exists a value 𝑐 in the interval (0, πœ‹) such that:

𝑓(𝑐) = 1/π‘βˆ’π‘Ž ∫[𝑓(π‘₯)]𝑑π‘₯

Using the limits from the previous part, the equation becomes:

𝑓(𝑐) = 3/πœ‹ ∫[𝑓(π‘₯)]𝑑π‘₯

We already know the antiderivative 𝐹(π‘₯) from part (a), so we can rewrite the equation as:

𝐹(𝑐) = 3/πœ‹ 𝐹(πœ‹/3)

This equation can be solved for 𝑐 by setting the two sides equal to each other and solving for 𝑐. However, the algebraic manipulation required to solve for 𝑐 is complex and cumbersome.