AP Calculus AB Exam Question:
Consider the function f(x)=x25.
a) Find the indefinite integral ∫f(x)dx.
b) Find the definite integral ∫12f(x)dx.
Answer:
a) To find the indefinite integral ∫f(x)dx, we need to integrate the function f(x)=x25 with respect to x. Applying the power rule of integration, we have:
∫f(x)dx=∫x25dx=5∫x−2dx.Using the power rule of integration, we can rewrite x−2 as x−2=x21.
∫f(x)dx=5∫x−2dx=5∫x21dx.Now, using the power rule of integration, we integrate x21:
∫f(x)dx=5∫x21dx=5⋅−1x11+C=−x5+C,where C is the constant of integration.
Therefore, ∫f(x)dx=−x5+C.
b) To find the definite integral ∫12f(x)dx, we use the fundamental theorem of calculus. From part a), we know that ∫f(x)dx=−x5+C. Now, we evaluate the definite integral:
∫12f(x)dx=[−x5]12=−25−(−15)=−25+5=25.Hence, ∫12f(x)dx=25.