Post

Created by @nathanedwards
 at November 1st 2023, 1:09:02 am.

AP Calculus AB Exam Question:

Consider the function f(x)=5x2f(x) = \frac{5}{x^2}.

a) Find the indefinite integral f(x)dx\int f(x) dx.

b) Find the definite integral 12f(x)dx\int_{1}^{2} f(x) dx.

Answer:

a) To find the indefinite integral f(x)dx\int f(x) dx, we need to integrate the function f(x)=5x2f(x) = \frac{5}{x^2} with respect to xx. Applying the power rule of integration, we have:

f(x)dx=5x2dx=5x2dx.\int f(x) dx = \int \frac{5}{x^2} dx = 5\int x^{-2} dx.

Using the power rule of integration, we can rewrite x2x^{-2} as x2=1x2x^{-2} = \frac{1}{x^2}.

f(x)dx=5x2dx=51x2dx.\int f(x) dx = 5\int x^{-2} dx = 5 \int \frac{1}{x^2} dx.

Now, using the power rule of integration, we integrate 1x2\frac{1}{x^2}:

f(x)dx=51x2dx=511x1+C=5x+C,\int f(x) dx = 5 \int \frac{1}{x^2} dx = 5 \cdot \frac{1}{-1 x^1} + C = - \frac{5}{x} + C,

where CC is the constant of integration.

Therefore, f(x)dx=5x+C\int f(x) dx = - \frac{5}{x} + C.

b) To find the definite integral 12f(x)dx\int_{1}^{2} f(x) dx, we use the fundamental theorem of calculus. From part a), we know that f(x)dx=5x+C\int f(x) dx = - \frac{5}{x} + C. Now, we evaluate the definite integral:

12f(x)dx=[5x]12=52(51)=52+5=52.\int_{1}^{2} f(x) dx = \left[- \frac{5}{x} \right]_{1}^{2} = -\frac{5}{2} - \left(-\frac{5}{1}\right) = -\frac{5}{2} + 5 = \frac{5}{2}.

Hence, 12f(x)dx=52\int_{1}^{2} f(x) dx = \frac{5}{2}.