Post

Created by @nathanedwards
 at November 1st 2023, 3:02:33 pm.

AP Calculus AB Exam Question - Implicit Differentiation

Consider the implicitly defined equation of a curve:

x3y3+3xy=6 x^3 - y^3 + 3xy = 6 (a)

(b) Find the equation of the tangent line to the curve at the point (1,1)(1, 1).


Answer

(a) To find dydx\frac{{dy}}{{dx}} using implicit differentiation, we'll differentiate both sides of the equation with respect to xx, treating yy as an implicit function of xx.

Taking the derivative of x3y3+3xyx^3 - y^3 + 3xy with respect to xx using the chain rule, we get:

ddx(x3y3+3xy)=ddx(6)\frac{{d}}{{dx}}(x^3 - y^3 + 3xy) = \frac{{d}}{{dx}}(6)

Using the power rule, the chain rule, and the product rule, we can differentiate each term:

3x2ddx(y3)+3(xdydx+y)=03x^2 - \frac{{d}}{{dx}}(y^3) + 3\left(x\frac{{dy}}{{dx}} + y\right) = 0

We differentiate y3y^3 using the chain rule:

ddx(y3)=3y2dydx\frac{{d}}{{dx}}(y^3) = 3y^2 \cdot \frac{{dy}}{{dx}}

Substituting this back into our equation, we have:

3x23y2dydx+3(xdydx+y)=03x^2 - 3y^2 \cdot \frac{{dy}}{{dx}} + 3\left(x\frac{{dy}}{{dx}} + y\right) = 0

Now, let's isolate dydx\frac{{dy}}{{dx}} on one side of the equation:

3x2+3xdydx3y2dydx+3y=03x^2 + 3x\frac{{dy}}{{dx}} - 3y^2\frac{{dy}}{{dx}} + 3y = 0
3xdydx3y2dydx=3x23y3x\frac{{dy}}{{dx}} - 3y^2\frac{{dy}}{{dx}} = -3x^2 - 3y
dydx(3x3y2)=3x23y\frac{{dy}}{{dx}}(3x - 3y^2) = -3x^2 - 3y
dydx=3x23y3x3y2\frac{{dy}}{{dx}} = \frac{{-3x^2 - 3y}}{{3x - 3y^2}}
dydx=x2yxy2\frac{{dy}}{{dx}} = \frac{{-x^2 - y}}{{x - y^2}}

Hence, the expression for dydx\frac{{dy}}{{dx}} in terms of xx and yy is x2yxy2\frac{{-x^2 - y}}{{x - y^2}}.

(b) To find the equation of the tangent line to the curve at the point (1,1)(1, 1), we'll substitute x=1x = 1 and y=1y = 1 into the expression for dydx\frac{{dy}}{{dx}} derived in part (a).

dydx=(1)2(1)(1)(1)2=20\frac{{dy}}{{dx}} = \frac{{-(1)^2 - (1)}}{{(1) - (1)^2}} = \frac{{-2}}{{0}}

Here, we encounter an indeterminate form (20\frac{{-2}}{{0}}). To resolve this, we'll find the limit as xx approaches 11 and yy approaches 11.

Let's differentiate the given equation implicitly to find d2ydx2\frac{{d^2y}}{{dx^2}}:

ddx(3x2+3xdydx3y2dydx)=ddx(3x23y)\frac{{d}}{{dx}}(3x^2 + 3x\frac{{dy}}{{dx}} - 3y^2\frac{{dy}}{{dx}}) = \frac{{d}}{{dx}}(-3x^2 - 3y)
6x+3(dydx)2+3xd2ydx23(dydx)26ydydx=6x36x + 3\left(\frac{{dy}}{{dx}}\right)^2 + 3x\frac{{d^2y}}{{dx^2}} - 3\left(\frac{{dy}}{{dx}}\right)^2 - 6y\frac{{dy}}{{dx}} = -6x - 3
6x6ydydx+3xd2ydx2=6x36x - 6y\frac{{dy}}{{dx}} + 3x\frac{{d^2y}}{{dx^2}} = -6x - 3
6x6ydydx+3xd2ydx2=6x36x - 6y\frac{{dy}}{{dx}} + 3x\frac{{d^2y}}{{dx^2}} = -6x - 3
6x6y(x2yxy2)+3xd2ydx2=6x36x - 6y\left(\frac{{-x^2 - y}}{{x - y^2}}\right) + 3x\frac{{d^2y}}{{dx^2}} = -6x - 3
6x+6xyxy2+3xd2ydx2=6x36x + \frac{{6xy}}{{x - y^2}} + 3x\frac{{d^2y}}{{dx^2}} = -6x - 3
6xyxy2+3xd2ydx2=9x3\frac{{6xy}}{{x - y^2}} + 3x\frac{{d^2y}}{{dx^2}} = -9x - 3
3x(2yxy2+d2ydx2)=9x33x\left(\frac{{2y}}{{x - y^2}} + \frac{{d^2y}}{{dx^2}}\right) = -9x - 3

Now, substitute x=1x = 1 and y=1y = 1 into this equation to find d2ydx2\frac{{d^2y}}{{dx^2}}:

3(1)(2(1)1(1)2+d2ydx2)=9(1)33(1)\left(\frac{{2(1)}}{{1 - (1)^2}} + \frac{{d^2y}}{{dx^2}}\right) = -9(1) - 3
60+3d2ydx2=93\frac{{6}}{{0}} + 3\frac{{d^2y}}{{dx^2}} = -9 - 3
3d2ydx2=123\frac{{d^2y}}{{dx^2}} = -12
d2ydx2=4\frac{{d^2y}}{{dx^2}} = -4

Therefore, the second derivative of yy with respect to xx evaluated at (1,1)(1, 1) is 4-4.

Now, let's use the point-slope form to find the equation of the tangent line:

yy1=m(xx1)y - y_1 = m(x - x_1)
y1=(4)(x1)y - 1 = (-4)(x - 1)
y1=4x+4y - 1 = -4x + 4
y=4x+5y = -4x + 5

Hence, the equation of the tangent line to the curve at the point (1,1)(1, 1) is y=4x+5y = -4x + 5.