Post

Created by @nathanedwards
 at November 4th 2023, 11:18:21 pm.

AP Calculus AB Exam Question:

Consider the curve defined by the function y=f(x)y = f(x), where f(x)f(x) is a continuous function on the interval [0,2][0, 2]. The region bounded by the x-axis and this curve is revolved about the y-axis, creating a solid of revolution.

(a) Find the volume of the solid generated when the shaded region is revolved about the y-axis.

Solid of Revolution

(b) The function f(x)f(x) is defined as follows:

f(x)={x20x<12x1x2 f(x) = \begin{cases} x^2 & 0 \leq x < 1 \\ 2-x & 1 \leq x \leq 2 \\ \end{cases}
Calculate the volume of the solid of revolution generated when the shaded region is revolved about the y-axis.

(Note: The formula for the volume of a solid of revolution, when revolved about the y-axis, is given by V=πabf(x)2dxV = \pi\int_a^b f(x)^2 dx, where aa and bb are the x-values determining the region of revolution.)

Answer:

(a) To find the volume of the solid generated by revolving the shaded region about the y-axis, we'll make use of the formula V=πabf(x)2dxV = \pi\int_a^b f(x)^2 dx, where aa and bb are the x-values that determine the region of revolution.

In this case, the region of revolution is bounded by the x-axis and the curve y=f(x)y = f(x). The graph of y=f(x)y = f(x) intersects the x-axis at x=0x = 0 and x=2x = 2, so a=0a = 0 and b=2b = 2.

We need to find the function f(x)f(x) in terms of yy to rewrite the integral:

x={y0y<12y1y4x = \begin{cases} \sqrt{y} & 0 \leq y < 1 \\ 2-y & 1 \leq y \leq 4 \\ \end{cases}

Now, let's rewrite the integral in terms of yy:

V=π04x2dyV = \pi\int_0^4 x^2 dy

Using the transformation x=yx = \sqrt{y} for 0y<10 \leq y < 1:

V=π01(y)2dy=π01ydyV = \pi\int_0^1 (\sqrt{y})^2 dy = \pi\int_0^1 y dy

Using the transformation x=2yx = 2-y for 1y41 \leq y \leq 4:

V=π14(2y)2dy=π14(y24y+4)dyV = \pi\int_1^4 (2-y)^2 dy = \pi\int_1^4 (y^2 - 4y + 4) dy

Simplifying the integrals:

V=π[y22]01+π[y332y2+4y]14V = \pi\left[\frac{y^2}{2}\right]_0^1 + \pi\left[\frac{y^3}{3} - 2y^2 + 4y\right]_1^4
V=π(12)+π(64332+16(132+4))V = \pi\left(\frac{1}{2}\right) + \pi\left(\frac{64}{3} - 32 + 16 - \left(\frac{1}{3} - 2 + 4\right)\right)
V=π(12)+π(64332+1653+24)V = \pi\left(\frac{1}{2}\right) + \pi\left(\frac{64}{3} - 32 + 16 - \frac{5}{3} + 2 - 4\right)
V=π(12)+π(273)V = \pi\left(\frac{1}{2}\right) + \pi\left(\frac{27}{3}\right)
V=π(12+9)=π(192)V = \pi\left(\frac{1}{2} + 9\right) = \pi\left(\frac{19}{2}\right)

Therefore, the volume of the solid generated by revolving the shaded region about the y-axis is π(192)\pi\left(\frac{19}{2}\right).

(b) Using the function f(x)f(x) provided, we can use the same formula V=πabf(x)2dxV = \pi\int_a^b f(x)^2 dx to find the volume of the solid generated when the shaded region is revolved about the y-axis.

Considering how f(x)f(x) is defined, we have:

V=π01(x2)2dx+π12(2x)2dxV = \pi\int_0^1 (x^2)^2 dx + \pi\int_1^2 (2-x)^2 dx

Simplifying the integral expression:

V=π01x4dx+π12(x24x+4)dxV = \pi\int_0^1 x^4 dx + \pi\int_1^2 (x^2 - 4x + 4) dx
V=π[x55]01+π[x332x2+4x]12V = \pi\left[\frac{x^5}{5}\right]_0^1 + \pi\left[\frac{x^3}{3} - 2x^2 + 4x\right]_1^2
V=π(15)+π(838+813+24)V = \pi\left(\frac{1}{5}\right) + \pi\left(\frac{8}{3} - 8 + 8 - \frac{1}{3} + 2 - 4\right)
V=π(15)+π(16312)V = \pi\left(\frac{1}{5}\right) + \pi\left(\frac{16}{3} - 1 - 2\right)
V=π(15)+π(16353)V = \pi\left(\frac{1}{5}\right) + \pi\left(\frac{16}{3} - \frac{5}{3}\right)
V=π(15)+π(113)V = \pi\left(\frac{1}{5}\right) + \pi\left(\frac{11}{3}\right)
V=π(315)+π(5515)V = \pi\left(\frac{3}{15}\right) + \pi\left(\frac{55}{15}\right)
V=π(3+5515)=π(5815)V = \pi\left(\frac{3 + 55}{15}\right) = \pi\left(\frac{58}{15}\right)

Therefore, the volume of the solid of revolution generated when the shaded region is revolved about the y-axis is π(5815)\pi\left(\frac{58}{15}\right).