Post

Created by @nathanedwards
 at November 3rd 2023, 8:46:06 pm.

Question:

Let CC be the curve defined by the equation y=12x3x2xy = \frac{1}{2}x^3 - x^2 - x.

a) Find the length of the curve CC between x=0x=0 and x=2x=2. Show all work.

b) Find the length of the curve CC between x=0x=0 and x=4x=4. Show all work.

Answer:

a) To find the length of the curve CC between x=0x=0 and x=2x=2, we can use the arc length formula for a function f(x)f(x). The formula is given by:

L=ab1+(f(x))2dxL = \int_{a}^{b} \sqrt{1 + (f'(x))^2} \, dx

where f(x)f'(x) represents the derivative of f(x)f(x).

Given that y=12x3x2xy = \frac{1}{2}x^3 - x^2 - x, let's find the derivative yy':

y=ddx(12x3x2x)y' = \frac{d}{dx}\left(\frac{1}{2}x^3 - x^2 - x\right)
=32x22x1= \frac{3}{2}x^2 - 2x - 1

Now, we can calculate the integrand 1+(y)2\sqrt{1 + (y')^2}:

1+(y)2=1+(32x22x1)2\sqrt{1 + (y')^2} = \sqrt{1 + \left(\frac{3}{2}x^2 - 2x - 1\right)^2}

Let's integrate 1+(y)2\sqrt{1 + (y')^2} over the interval x=0x=0 to x=2x=2:

L=021+(32x22x1)2dxL = \int_{0}^{2} \sqrt{1 + \left(\frac{3}{2}x^2 - 2x - 1\right)^2} \, dx

This integral is difficult to evaluate directly. We can simplify it using trigonometric substitution. Let:

32x22x1=sinh(t)\frac{3}{2}x^2 - 2x - 1 = \sinh(t)

Taking the derivative of both sides, we get:

3x2=cosh(t)dtdx3x - 2 = \cosh(t) \cdot \frac{dt}{dx}

Solving for dtdx\frac{dt}{dx}, we get:

dtdx=3x2cosh(t)\frac{dt}{dx} = \frac{3x - 2}{\cosh(t)}

Rearranging, we have:

dx=cosh(t)3x2dtdx = \frac{\cosh(t)}{3x - 2} \cdot dt

Substituting the values into the integral, we get:

L=t1t21+sinh2(t)cosh(t)3x2dtL = \int_{t_1}^{t_2} \sqrt{1 + \sinh^2(t)} \cdot \frac{\cosh(t)}{3x - 2} \cdot dt

where t1t_1 and t2t_2 are the corresponding limits for x=0x=0 and x=2x=2 respectively.

To find t1t_1 and t2t_2, we solve for xx in terms of tt:

32x22x1=sinh(t)\frac{3}{2}x^2 - 2x - 1 = \sinh(t)

This is a quadratic equation that can be solved using the quadratic formula:

x=2±4+6sinh(t)3x = \frac{2 \pm \sqrt{4 + 6\sinh(t)}}{3}

Setting x=0x=0 and x=2x=2 gives us:

t1=arcsinh(62)t_1 = \text{arcsinh}\left(\frac{\sqrt{6}}{2}\right) and t2=arcsinh(263)t_2 = \text{arcsinh}\left(\frac{2\sqrt{6}}{3}\right)

After substituting the values, we get:

L=arcsinh(62)arcsinh(263)1+sinh2(t)cosh(t)3x2dtL = \int_{\text{arcsinh}\left(\frac{\sqrt{6}}{2}\right)}^{\text{arcsinh}\left(\frac{2\sqrt{6}}{3}\right)} \sqrt{1 + \sinh^2(t)} \cdot \frac{\cosh(t)}{3x - 2} \cdot dt

Unfortunately, this integral cannot be evaluated exactly. We need to either approximate using numerical methods or use a calculator or computer software to find the answer.

b) Similarly, to find the length of the curve CC between x=0x=0 and x=4x=4, we use the same arc length formula:

L=041+(32x22x1)2dxL = \int_{0}^{4} \sqrt{1 + \left(\frac{3}{2}x^2 - 2x - 1\right)^2} \, dx

Using the same substitutions as before, we find:

t1=arcsinh(102)t_1 = \text{arcsinh}\left(\frac{\sqrt{10}}{2}\right) and t2=arcsinh(4103)t_2 = \text{arcsinh}\left(\frac{4\sqrt{10}}{3}\right)

Substituting the values into the formula, we have:

L=arcsinh(102)arcsinh(4103)1+sinh2(t)cosh(t)3x2dtL = \int_{\text{arcsinh}\left(\frac{\sqrt{10}}{2}\right)}^{\text{arcsinh}\left(\frac{4\sqrt{10}}{3}\right)} \sqrt{1 + \sinh^2(t)} \cdot \frac{\cosh(t)}{3x - 2} \cdot dt

Again, this integral cannot be evaluated exactly, so numerical methods or technology are needed to find the answer.