Question:
Let C C C be the curve defined by the equation y = 1 2 x 3 − x 2 − x y = \frac{1}{2}x^3 - x^2 - x y = 2 1 x 3 − x 2 − x .
a) Find the length of the curve C C C between x = 0 x=0 x = 0 and x = 2 x=2 x = 2 . Show all work.
b) Find the length of the curve C C C between x = 0 x=0 x = 0 and x = 4 x=4 x = 4 . Show all work.
Answer:
a) To find the length of the curve C C C between x = 0 x=0 x = 0 and x = 2 x=2 x = 2 , we can use the arc length formula for a function f ( x ) f(x) f ( x ) . The formula is given by:
L = ∫ a b 1 + ( f ′ ( x ) ) 2 d x L = \int_{a}^{b} \sqrt{1 + (f'(x))^2} \, dx L = ∫ a b 1 + ( f ′ ( x ) ) 2 d x where f ′ ( x ) f'(x) f ′ ( x ) represents the derivative of f ( x ) f(x) f ( x ) .
Given that y = 1 2 x 3 − x 2 − x y = \frac{1}{2}x^3 - x^2 - x y = 2 1 x 3 − x 2 − x , let's find the derivative y ′ y' y ′ :
y ′ = d d x ( 1 2 x 3 − x 2 − x ) y' = \frac{d}{dx}\left(\frac{1}{2}x^3 - x^2 - x\right) y ′ = d x d ( 2 1 x 3 − x 2 − x ) = 3 2 x 2 − 2 x − 1 = \frac{3}{2}x^2 - 2x - 1 = 2 3 x 2 − 2 x − 1 Now, we can calculate the integrand 1 + ( y ′ ) 2 \sqrt{1 + (y')^2} 1 + ( y ′ ) 2 :
1 + ( y ′ ) 2 = 1 + ( 3 2 x 2 − 2 x − 1 ) 2 \sqrt{1 + (y')^2} = \sqrt{1 + \left(\frac{3}{2}x^2 - 2x - 1\right)^2} 1 + ( y ′ ) 2 = 1 + ( 2 3 x 2 − 2 x − 1 ) 2 Let's integrate 1 + ( y ′ ) 2 \sqrt{1 + (y')^2} 1 + ( y ′ ) 2 over the interval x = 0 x=0 x = 0 to x = 2 x=2 x = 2 :
L = ∫ 0 2 1 + ( 3 2 x 2 − 2 x − 1 ) 2 d x L = \int_{0}^{2} \sqrt{1 + \left(\frac{3}{2}x^2 - 2x - 1\right)^2} \, dx L = ∫ 0 2 1 + ( 2 3 x 2 − 2 x − 1 ) 2 d x This integral is difficult to evaluate directly. We can simplify it using trigonometric substitution. Let:
3 2 x 2 − 2 x − 1 = sinh ( t ) \frac{3}{2}x^2 - 2x - 1 = \sinh(t) 2 3 x 2 − 2 x − 1 = sinh ( t ) Taking the derivative of both sides, we get:
3 x − 2 = cosh ( t ) ⋅ d t d x 3x - 2 = \cosh(t) \cdot \frac{dt}{dx} 3 x − 2 = cosh ( t ) ⋅ d x d t Solving for d t d x \frac{dt}{dx} d x d t , we get:
d t d x = 3 x − 2 cosh ( t ) \frac{dt}{dx} = \frac{3x - 2}{\cosh(t)} d x d t = cosh ( t ) 3 x − 2 Rearranging, we have:
d x = cosh ( t ) 3 x − 2 ⋅ d t dx = \frac{\cosh(t)}{3x - 2} \cdot dt d x = 3 x − 2 cosh ( t ) ⋅ d t Substituting the values into the integral, we get:
L = ∫ t 1 t 2 1 + sinh 2 ( t ) ⋅ cosh ( t ) 3 x − 2 ⋅ d t L = \int_{t_1}^{t_2} \sqrt{1 + \sinh^2(t)} \cdot \frac{\cosh(t)}{3x - 2} \cdot dt L = ∫ t 1 t 2 1 + sinh 2 ( t ) ⋅ 3 x − 2 cosh ( t ) ⋅ d t where t 1 t_1 t 1 and t 2 t_2 t 2 are the corresponding limits for x = 0 x=0 x = 0 and x = 2 x=2 x = 2 respectively.
To find t 1 t_1 t 1 and t 2 t_2 t 2 , we solve for x x x in terms of t t t :
3 2 x 2 − 2 x − 1 = sinh ( t ) \frac{3}{2}x^2 - 2x - 1 = \sinh(t) 2 3 x 2 − 2 x − 1 = sinh ( t ) This is a quadratic equation that can be solved using the quadratic formula:
x = 2 ± 4 + 6 sinh ( t ) 3 x = \frac{2 \pm \sqrt{4 + 6\sinh(t)}}{3} x = 3 2 ± 4 + 6 sinh ( t ) Setting x = 0 x=0 x = 0 and x = 2 x=2 x = 2 gives us:
t 1 = arcsinh ( 6 2 ) t_1 = \text{arcsinh}\left(\frac{\sqrt{6}}{2}\right) t 1 = arcsinh ( 2 6 ) and t 2 = arcsinh ( 2 6 3 ) t_2 = \text{arcsinh}\left(\frac{2\sqrt{6}}{3}\right) t 2 = arcsinh ( 3 2 6 )
After substituting the values, we get:
L = ∫ arcsinh ( 6 2 ) arcsinh ( 2 6 3 ) 1 + sinh 2 ( t ) ⋅ cosh ( t ) 3 x − 2 ⋅ d t L = \int_{\text{arcsinh}\left(\frac{\sqrt{6}}{2}\right)}^{\text{arcsinh}\left(\frac{2\sqrt{6}}{3}\right)} \sqrt{1 + \sinh^2(t)} \cdot \frac{\cosh(t)}{3x - 2} \cdot dt L = ∫ arcsinh ( 2 6 ) arcsinh ( 3 2 6 ) 1 + sinh 2 ( t ) ⋅ 3 x − 2 cosh ( t ) ⋅ d t Unfortunately, this integral cannot be evaluated exactly. We need to either approximate using numerical methods or use a calculator or computer software to find the answer.
b) Similarly, to find the length of the curve C C C between x = 0 x=0 x = 0 and x = 4 x=4 x = 4 , we use the same arc length formula:
L = ∫ 0 4 1 + ( 3 2 x 2 − 2 x − 1 ) 2 d x L = \int_{0}^{4} \sqrt{1 + \left(\frac{3}{2}x^2 - 2x - 1\right)^2} \, dx L = ∫ 0 4 1 + ( 2 3 x 2 − 2 x − 1 ) 2 d x Using the same substitutions as before, we find:
t 1 = arcsinh ( 10 2 ) t_1 = \text{arcsinh}\left(\frac{\sqrt{10}}{2}\right) t 1 = arcsinh ( 2 10 ) and t 2 = arcsinh ( 4 10 3 ) t_2 = \text{arcsinh}\left(\frac{4\sqrt{10}}{3}\right) t 2 = arcsinh ( 3 4 10 )
Substituting the values into the formula, we have:
L = ∫ arcsinh ( 10 2 ) arcsinh ( 4 10 3 ) 1 + sinh 2 ( t ) ⋅ cosh ( t ) 3 x − 2 ⋅ d t L = \int_{\text{arcsinh}\left(\frac{\sqrt{10}}{2}\right)}^{\text{arcsinh}\left(\frac{4\sqrt{10}}{3}\right)} \sqrt{1 + \sinh^2(t)} \cdot \frac{\cosh(t)}{3x - 2} \cdot dt L = ∫ arcsinh ( 2 10 ) arcsinh ( 3 4 10 ) 1 + sinh 2 ( t ) ⋅ 3 x − 2 cosh ( t ) ⋅ d t Again, this integral cannot be evaluated exactly, so numerical methods or technology are needed to find the answer.