Post

Created by @nathanedwards
 at November 1st 2023, 12:42:10 am.

Question:

Find the definite integral of the function

f(x)=3x2+2x+1 f(x) = 3x^2 + 2x + 1

over the interval [1,4][1, 4].

Solution:

To find the definite integral of the function f(x)f(x) over the interval [a,b][a, b], we need to evaluate the antiderivative of f(x)f(x) and then substitute the upper and lower limits of integration.

Step 1: Evaluate the antiderivative of f(x)f(x):

F(x)=(3x2+2x+1)dx F(x) = \int (3x^2 + 2x + 1) \, dx

Applying the power rule for integration,

F(x)=(3x2+2x+1)dx=33x3+22x2+x+C=x3+x2+x+C \begin{align*} F(x) &= \int (3x^2 + 2x + 1) \, dx \\ &= \frac{3}{3}x^3 + \frac{2}{2}x^2 + x + C \\ &= x^3 + x^2 + x + C \end{align*}

where CC is the constant of integration.

Step 2: Evaluate the definite integral using the antiderivative obtained in Step 1:

The definite integral of f(x)f(x) over the interval [1,4][1, 4] is given by:

14(3x2+2x+1)dx=F(4)F(1)=(43+42+4)(13+12+1)=(64+16+4)(1+1+1)=(84)(3)=81 \begin{align*} \int_{1}^{4} (3x^2 + 2x + 1) \, dx &= F(4) - F(1) \\ &= (4^3 + 4^2 + 4) - (1^3 + 1^2 + 1) \\ &= (64 + 16 + 4) - (1 + 1 + 1) \\ &= (84) - (3) \\ &= 81 \end{align*}

Therefore, the definite integral of f(x)=3x2+2x+1f(x) = 3x^2 + 2x + 1 over the interval [1,4][1, 4] is equal to 8181.