AP Calculus AB Exam Question
Suppose f(x)=xln(x) and g(x)=x2cos(x). Use L'Hôpital's Rule to find the limit as x approaches 0 of g(x)f(x).
(a) Find the derivatives of f(x) and g(x).
(b) Apply L'Hôpital's Rule to find limx→0g(x)f(x).
(c) Determine whether the given limit is finite or infinite. If it is finite, find its value.
Answer
(a) First, let's find the derivatives of f(x) and g(x).
Derivative of f(x):
[ f'(x) = \frac{d}{dx}\left(\frac{\ln(x)}{x}\right) ]
Applying the quotient rule:
[ f'(x) = \frac{\frac{1}{x} \cdot x - \ln(x) \cdot 1}{x^2} ]
Simplifying:
[ f'(x) = \frac{1 - \ln(x)}{x^2} ]
Derivative of g(x):
[ g'(x) = \frac{d}{dx}\left(\frac{\cos(x)}{x^2}\right) ]
Again applying the quotient rule:
[ g'(x) = \frac{-\sin(x) \cdot x^2 - \cos(x) \cdot 2x}{x^4} ]
Simplifying:
[ g'(x) = \frac{-x^2\sin(x) - 2x\cos(x)}{x^4} ]
[ g'(x) = \frac{-x\sin(x) - 2\cos(x)}{x^3} ]
(b) We will apply L'Hôpital's Rule to find limx→0g(x)f(x).
Using L'Hôpital's Rule:
[ \lim_{x\to 0} \frac{f(x)}{g(x)} = \lim_{x\to 0} \frac{f'(x)}{g'(x)} ]
Substituting the derivatives:
[ \lim_{x\to 0} \frac{f(x)}{g(x)} = \lim_{x\to 0} \frac{\frac{1 - \ln(x)}{x^2}}{\frac{-x\sin(x) - 2\cos(x)}{x^3}} ]
[ = \lim_{x\to 0} \frac{x^3(1 - \ln(x))}{x^2(-x\sin(x) - 2\cos(x))} ]
[ = \lim_{x\to 0} \frac{x(1 - \ln(x))}{-x\sin(x) - 2\cos(x)} ]
Now, substitute x=0 into the expression, we get:
[ \lim_{x\to 0} \frac{f(x)}{g(x)} = \frac{0(1 - \ln(0))}{-0\sin(0) - 2\cos(0)} ]
[ = \frac{0(-\infty)}{-0 - 2(1)} = \frac{0}{-2} = 0 ]
(c) Since we found that the limit is finite, the value of the limit as x approaches 0 of g(x)f(x) is 0.