Data Visualization:
Visualizing the data is crucial for uncovering patterns and relationships. Pandas integrates well with popular data visualization libraries like Matplotlib and Seaborn. We can use functions like plot()
, bar()
, scatter()
, and heatmap()
to create insightful visualizations.
# Plotting line chart
data.plot(x='x_column', y='y_column')
plt.show()
# Creating a bar plot
data['column'].value_counts().plot(kind='bar')
plt.show()
# Generating a scatter plot
data.plot.scatter(x='x_column', y='y_column')
plt.show()
# Creating a heatmap
sns.heatmap(data.corr(), annot=True)
plt.show()