Post

Created by @nathanedwards
 at October 31st 2023, 11:02:50 pm.

Question:

Consider the function f(x)=3x2+2x4f(x) = 3x^2 + 2x - 4 over the interval [1,4][1, 4].

(a) Find the average value of the function over this interval.

(b) Determine at least one value of cc in (1,4)(1, 4) that satisfies the Mean Value Theorem for Integrals for this function on the given interval.


Answer:

(a) Average Value

To find the average value of a function f(x)f(x) over an interval [a,b][a, b], we need to evaluate the definite integral of f(x)f(x) over that interval and then divide the result by the length of the interval.

The average value of f(x)f(x) over the interval [a,b][a, b] is given by the formula:

Average Value=1baabf(x)dx\text{Average Value} = \frac{1}{b-a} \int_a^b f(x) \,dx

For the given function f(x)=3x2+2x4f(x) = 3x^2 + 2x - 4 over the interval [1,4][1, 4], we can find the average value as follows:

\begin{align*} \text{Average Value} &= \frac{1}{4-1} \int_1^4 (3x^2 + 2x - 4) ,dx \ &= \frac{1}{3} \int_1^4 (3x^2 + 2x - 4) ,dx \ &= \frac{1}{3}\left[\frac{3x^3}{3} + \frac{2x^2}{2} - 4x\right]_1^4 \ &= \frac{1}{3}\left[x^3 + x^2 - 4x\right]_1^4 \ &= \frac{1}{3}\left[(4^3 + 4^2 - 4(4)) - (1^3 + 1^2 - 4(1))\right] \ &= \frac{1}{3}\left[64 + 16 - 16 - 1 - 1 + 4\right] \ &= \frac{1}{3}\left[66\right] \ &= \boxed{22} \end{align*}

Therefore, the average value of the function f(x)f(x) over the interval [1,4][1, 4] is 2222.


(b) Mean Value Theorem for Integrals

According to the Mean Value Theorem for Integrals, if a function f(x)f(x) is continuous on the closed interval [a,b][a, b], then there exists at least one value cc in (a,b)(a, b) such that the instantaneous rate of change of f(x)f(x) at cc is equal to the average rate of change of f(x)f(x) over [a,b][a, b].

For the given function f(x)=3x2+2x4f(x) = 3x^2 + 2x - 4 over the interval [1,4][1, 4], we need to find a value cc in (1,4)(1, 4) that satisfies the Mean Value Theorem for Integrals.

First, let's find the average rate of change of f(x)f(x) over [1,4][1, 4]. To do this, we calculate the derivative of f(x)f(x) and then evaluate it at some value in (1,4)(1, 4).

\begin{align*} f(x) &= 3x^2 + 2x - 4 \ f'(x) &= 6x + 2 \end{align*}

Now, we evaluate f(x)f'(x) at cc, leading to:

\begin{align*} f'(c) &= 6c + 2 \end{align*}

Next, we need to find the average rate of change of f(x)f(x) over [1,4][1, 4]. To do this, we calculate f(b)f(a)ba\frac{f(b) - f(a)}{b - a}, where a=1a = 1 and b=4b = 4.

\begin{align*} \frac{f(b) - f(a)}{b - a} &= \frac{f(4) - f(1)}{4 - 1} \ &= \frac{(3(4)^2 + 2(4) - 4) - (3(1)^2 + 2(1) - 4)}{4 - 1} \ &= \frac{(48 + 8 - 4) - (3 + 2 - 4)}{3} \ &= \frac{52 - 5}{3} \ &= \frac{47}{3} \end{align*}

To satisfy the Mean Value Theorem for Integrals, we need to find cc in (1,4)(1, 4) such that f(c)=473f'(c) = \frac{47}{3}.

Setting up the equation:

\begin{align*} 6c + 2 &= \frac{47}{3} \ 6c &= \frac{47}{3} - 2 \ 6c &= \frac{47 - 6 \times 2}{3} \ 6c &= \frac{47 - 12}{3} \ 6c &= \frac{35}{3} \ c &= \frac{35}{18} \end{align*}

Therefore, there exists at least one value cc in (1,4)(1, 4) (namely c=3518c = \frac{35}{18}) that satisfies the Mean Value Theorem for Integrals for the function f(x)=3x2+2x4f(x) = 3x^2 + 2x - 4 over the interval [1,4][1, 4].


In summary:

(a) The average value of the function f(x)=3x2+2x4f(x) = 3x^2 + 2x - 4 over the interval [1,4][1, 4] is 2222.

(b) The value of cc that satisfies the Mean Value Theorem for Integrals for the function f(x)=3x2+2x4f(x) = 3x^2 + 2x - 4 over the interval [1,4][1, 4] is c=3518c = \frac{35}{18}.