Question:
A light beam approaches a glass surface with an incident angle of 30°. The refractive index of the glass is 1.5. Determine the angle of refraction when the light beam enters the glass. Use Snell's law to solve this problem.
Solution:
Given: Incident angle (θ₁) = 30°, Refractive index of glass (n) = 1.5.
According to Snell's law,
where n₁ and θ₁ are the refractive index and incident angle before the boundary, and n₂ and θ₂ are the refractive index and angle after the boundary.
We need to find θ₂, the angle of refraction when the light beam enters the glass.
Step 1: Substitute the given values into Snell's law equation:
Step 2: Solve for θ₂:
Step 3: Use a calculator to find the inverse sine (sin^(-1)) of the value obtained in Step 2 to find θ₂:
Therefore, the angle of refraction when the light beam enters the glass is approximately 19.47°.