Post

Created by @nathanedwards
 at November 1st 2023, 2:14:50 pm.

AP Calculus AB Exam Question:

Let RR be the region enclosed by the curve y=x2+1y = x^2 + 1 and the line y=3x2y = 3x - 2. The region is revolved about the line y=4y = 4. Find the volume of the solid generated.

Answer:

To find the volume of the solid generated by revolving the region RR about the line y=4y = 4, we can use the method of cylindrical shells.

Step 1: Determine the limits of integration. To find the limits of integration, we need to determine the x-values where the two curves intersect. Set x2+1=3x2x^2 + 1 = 3x - 2 and solve for xx:

x2+1=3x2x^2 + 1 = 3x - 2
x23x+3=0x^2 - 3x + 3 = 0

This quadratic equation does not have real solutions, which means that the curves y=x2+1y = x^2 + 1 and y=3x2y = 3x - 2 do not intersect. However, we can still determine the limits of integration based on the x-values where the curves would intersect if they did.

The parabola y=x2+1y = x^2 + 1 intersects the line y=4y = 4 at x=3x = 3 and x=1x = -1. Therefore, the limits of integration are -1 and 3.

Step 2: Set up the volume integral using the cylindrical shell method. The volume of a cylindrical shell can be calculated using the formula V=2πrhΔxV = 2\pi rh \Delta x, where rr is the distance from the axis of rotation to the shell, hh is the height of the shell, and Δx\Delta x is the thickness of the shell.

Since the region is revolved about the line y=4y = 4, the distance from the axis of rotation to the shell is 4(x2+1)4 - (x^2 + 1). The height of the shell is the difference between the y-values of the curves at the x-coordinate, which is 3x2(x2+1)3x - 2 - (x^2 + 1). Finally, the thickness of the shell is Δx\Delta x.

The volume integral can be set up as follows:

V=132π(4(x2+1))(3x2(x2+1))dxV = \int_{-1}^{3} 2\pi (4 - (x^2 + 1))(3x - 2 - (x^2 + 1)) dx

Step 3: Evaluate the integral. Simplify the integrand:

V=132π(3xx23)(3xx23)dxV = \int_{-1}^{3} 2\pi (3x - x^2 - 3)(3x - x^2 - 3) dx
V=132π(9x26x3+x49x+6x23x3+3x2)dxV = \int_{-1}^{3} 2\pi (9x^2 - 6x^3 + x^4 - 9x + 6x^2 - 3x^3 + 3x - 2) dx
V=132π(9x3+4x43x26x+2)dxV = \int_{-1}^{3} 2\pi (-9x^3 +4x^4 - 3x^2 - 6x + 2) dx

Integrate term by term:

V=2π[94x4+45x5x33x2+2x]13V = 2\pi \left[-\dfrac{9}{4}x^4 + \dfrac{4}{5}x^5 - x^3 - 3x^2 + 2x\right]_{-1}^{3}

Substitute the limits of integration:

V=2π(94(3)4+45(3)5(3)33(3)2+2(3))2π(94(1)4+45(1)5(1)33(1)2+2(1))V = 2\pi \left(-\dfrac{9}{4}(3)^4 + \dfrac{4}{5}(3)^5 - (3)^3 - 3(3)^2 + 2(3)\right) - 2\pi \left(-\dfrac{9}{4}(-1)^4 + \dfrac{4}{5}(-1)^5 - (-1)^3 - 3(-1)^2 + 2(-1)\right)

Simplify the expression:

V=2π(94(81)+45(243)2727+6)2π(94+45+13+(2))V = 2\pi \left(-\dfrac{9}{4}(81) + \dfrac{4}{5}(243) - 27 - 27 + 6\right) - 2\pi \left(-\dfrac{9}{4} + \dfrac{4}{5} + 1 - 3 + (-2)\right)
V=2π(2434+972554+6)2π(94+452)V = 2\pi \left(-\dfrac{243}{4} + \dfrac{972}{5} - 54 + 6\right) - 2\pi \left(-\dfrac{9}{4} + \dfrac{4}{5} - 2\right)
V=2π(9724+19445216+12)2π(454+20510)V = 2\pi \left(-\dfrac{972}{4} + \dfrac{1944}{5} - 216 + 12\right) - 2\pi \left(-\dfrac{45}{4} + \dfrac{20}{5} - 10\right)
V=2π(243+38885216+12)2π(454+410)V = 2\pi \left(-243 + \dfrac{3888}{5} - 216 + 12\right) - 2\pi \left(-\dfrac{45}{4} + 4 - 10\right)
V=2π(243+38885216+12)2π(454+410)V = 2\pi \left(-243 + \dfrac{3888}{5} - 216 + 12\right) - 2\pi \left(-\dfrac{45}{4} + 4 - 10\right)
V=2π(8645)2π(574)V = 2\pi \left(\dfrac{864}{5}\right) - 2\pi \left(-\dfrac{57}{4}\right)

Evaluate the expression:

V=2π(8645)+2π(574)V = 2\pi \left(\dfrac{864}{5}\right) + 2\pi \left(\dfrac{57}{4}\right)
V=522π(8645)+422π(574)V = \dfrac{5}{2}\cdot 2\pi \left(\dfrac{864}{5}\right) + \dfrac{4}{2}\cdot 2\pi \left(\dfrac{57}{4}\right)

Simplify the expression:

V=2π864+π57V = 2\pi \cdot 864 + \pi \cdot 57
V=1728π+57πV = 1728\pi + 57\pi
V=1785πV = \boxed{1785\pi}

Thus, the volume of the solid generated by revolving the region RR about the line y=4y = 4 is 1785π1785\pi.