Question:
Consider the function f(x)=∫1xt+12t2+3dt, where x≥1.
a) Find f′(x) using the Fundamental Theorem of Calculus.
b) Using the result from part (a), evaluate f′(2).
c) Consider the function g(x)=∫0xf(t)dt. Find an expression for g′(x).
d) Using the result from part (c), evaluate g′(2).
Answer:
a) The Fundamental Theorem of Calculus states that if f(x)=∫axF(t)dt, then f′(x)=F(x). In this case, we have f(x)=∫1xt+12t2+3dt.
To find f′(x), we use the Chain Rule. Let u=x+1 and g(u)=∫u2(u−1)2+3du. Applying the Chain Rule, we have:
dxd[∫1xt+12t2+3dt]=dxd[g(x+1)]
=g′(x+1)⋅dxd[x+1]
=g′(x+1)
Now, to find g(u), we integrate u2(u−1)2+3 with respect to u. First, we expand and simplify the integrand:
g(u)=∫u2(u2−2u+1)+3du
=∫u2u2−4u+2+3du
=∫(2u−4+u2+3)du
=∫(2u−4+u5)du
Now we integrate term by term:
=2∫udu−4∫du+5∫u1du
=u2−4u+5ln∣u∣+C
Finally, substituting u=x+1, we get:
g(x+1)=(x+1)2−4(x+1)+5ln∣x+1∣+C
Therefore, f′(x)=g′(x+1)=dxd[(x+1)2−4(x+1)+5ln∣x+1∣+C]
b) To evaluate f′(2), we substitute x=2 into the derivative expression we found in part (a):
f′(2)=dxd[(x+1)2−4(x+1)+5ln∣x+1∣+C]x=2
=dxd[(2+1)2−4(2+1)+5ln∣2+1∣+C]
=dxd[9−12+5ln∣3∣+C]
=dxd[−3+5ln∣3∣+C]
=0
Therefore, f′(2)=0.
c) To find g′(x), we apply the Fundamental Theorem of Calculus again. We have g(x)=∫0xf(t)dt.
Applying the Fundamental Theorem of Calculus, we get:
g′(x)=f(x)
=∫1xt+12t2+3dt
d) To evaluate g′(2), we can substitute x=2 into the integrand expression we found in part (c):
g′(2)=∫12t+12t2+3dt
=[∫12t+12t2+3dt]
=[∫t+12t2+3dt]12
=[2t−4ln∣t+1∣]12
=[2(2)−4ln∣2+1∣]−[2(1)−4ln∣1+1∣]
=4−4ln(3)−2+4ln(2)
=2+4ln(2)−4ln(3)
Therefore, g′(2)=2+4ln(2)−4ln(3).