Post

Created by @nathanedwards
 at November 1st 2023, 9:01:25 am.

Question:

Consider the function f(x)=1x2t2+3t+1dtf(x) = \int_{1}^{x} \frac{2t^2+3}{t+1} \,dt, where x1x \geq 1.

a) Find f(x)f'(x) using the Fundamental Theorem of Calculus.

b) Using the result from part (a), evaluate f(2)f'(2).

c) Consider the function g(x)=0xf(t)dtg(x) = \int_{0}^{x} f(t) \,dt. Find an expression for g(x)g'(x).

d) Using the result from part (c), evaluate g(2)g'(2).

Answer:

a) The Fundamental Theorem of Calculus states that if f(x)=axF(t)dtf(x) = \int_{a}^{x} F(t) \,dt, then f(x)=F(x)f'(x) = F(x). In this case, we have f(x)=1x2t2+3t+1dtf(x) = \int_{1}^{x} \frac{2t^2+3}{t+1} \,dt.

To find f(x)f'(x), we use the Chain Rule. Let u=x+1u = x+1 and g(u)=2(u1)2+3udug(u) = \int \frac{2(u-1)^2+3}{u} \,du. Applying the Chain Rule, we have:

ddx[1x2t2+3t+1dt]=ddx[g(x+1)]\frac{d}{dx} \left[ \int_{1}^{x} \frac{2t^2+3}{t+1} \,dt \right] = \frac{d}{dx} \left[ g(x+1) \right]

=g(x+1)ddx[x+1]= g'(x+1) \cdot \frac{d}{dx} \left[ x+1 \right]

=g(x+1)= g'(x+1)

Now, to find g(u)g(u), we integrate 2(u1)2+3u\frac{2(u-1)^2+3}{u} with respect to uu. First, we expand and simplify the integrand:

g(u)=2(u22u+1)+3udug(u) = \int \frac{2(u^2-2u+1)+3}{u} \,du

=2u24u+2+3udu= \int \frac{2u^2-4u+2+3}{u} \,du

=(2u4+2+3u)du= \int \left(2u-4 + \frac{2+3}{u}\right) \,du

=(2u4+5u)du= \int \left(2u-4 + \frac{5}{u}\right) \,du

Now we integrate term by term:

=2udu4du+51udu= 2 \int u \,du - 4 \int \,du + 5\int \frac{1}{u} \,du

=u24u+5lnu+C= u^2 - 4u + 5 \ln|u| + C

Finally, substituting u=x+1u = x+1, we get:

g(x+1)=(x+1)24(x+1)+5lnx+1+Cg(x+1) = (x+1)^2 - 4(x+1) + 5 \ln|x+1| + C

Therefore, f(x)=g(x+1)=ddx[(x+1)24(x+1)+5lnx+1+C]f'(x) = g'(x+1) = \frac{d}{dx} \left[ (x+1)^2 - 4(x+1) + 5 \ln|x+1| + C \right]

b) To evaluate f(2)f'(2), we substitute x=2x = 2 into the derivative expression we found in part (a):

f(2)=ddx[(x+1)24(x+1)+5lnx+1+C]x=2f'(2) = \frac{d}{dx} \left[ (x+1)^2 - 4(x+1) + 5 \ln|x+1| + C \right] \bigg|_{x=2}

=ddx[(2+1)24(2+1)+5ln2+1+C]= \frac{d}{dx} \left[ (2+1)^2 - 4(2+1) + 5 \ln|2+1| + C \right]

=ddx[912+5ln3+C]= \frac{d}{dx} \left[ 9 - 12 + 5 \ln|3| + C \right]

=ddx[3+5ln3+C]= \frac{d}{dx} \left[ -3 + 5 \ln|3| + C \right]

=0= 0

Therefore, f(2)=0f'(2) = 0.

c) To find g(x)g'(x), we apply the Fundamental Theorem of Calculus again. We have g(x)=0xf(t)dtg(x) = \int_{0}^{x} f(t) \,dt.

Applying the Fundamental Theorem of Calculus, we get:

g(x)=f(x)g'(x) = f(x)

=1x2t2+3t+1dt= \int_{1}^{x} \frac{2t^2+3}{t+1} \,dt

d) To evaluate g(2)g'(2), we can substitute x=2x = 2 into the integrand expression we found in part (c):

g(2)=122t2+3t+1dtg'(2) = \int_{1}^{2} \frac{2t^2+3}{t+1} \,dt

=[122t2+3t+1dt]= \left[ \int_{1}^{2} \frac{2t^2+3}{t+1} \,dt \right]

=[2t2+3t+1dt]12= \left[ \int \frac{2t^2+3}{t+1} \,dt \right] \bigg|_{1}^{2}

=[2t4lnt+1]12= \left[ 2t - 4 \ln|t+1| \right] \bigg|_{1}^{2}

=[2(2)4ln2+1][2(1)4ln1+1]= \left[ 2(2) - 4 \ln|2+1| \right] - \left[ 2(1) - 4 \ln|1+1| \right]

=44ln(3)2+4ln(2)= 4 - 4 \ln(3) - 2 + 4 \ln(2)

=2+4ln(2)4ln(3)= 2 + 4 \ln(2) - 4 \ln(3)

Therefore, g(2)=2+4ln(2)4ln(3)g'(2) = 2 + 4 \ln(2) - 4 \ln(3).