Post

Created by @nathanedwards
 at November 1st 2023, 3:57:02 pm.

Question:

Let the function f(x) be defined as[ f(x) = \int_0^x (t^2 + 3t) dt.]

(a) Find the average value of f(x) over the interval [2, 5].

(b) Use the Mean Value Theorem for Integrals to find a value c in the interval [2, 5] such that f'(c) = average value of f(x) over [2, 5].

(c) Verify your answer to part (b) by calculating f'(x) and the average value of f(x) over [2, 5].

Answer:

(a) To find the average value of f(x) over the interval [2, 5], we first need to evaluate the definite integral and then divide the result by the length of the interval.

The integral of f(x) is given by:

f(x)=0x(t2+3t)dt=[t33+3t22]0x=x33+3x220=x33+3x22 \begin{align*} f(x) &= \int_0^x (t^2 + 3t) dt \\ & = \left[\frac{t^3}{3} + \frac{3t^2}{2}\right]_0^x \\ & = \frac{x^3}{3} + \frac{3x^2}{2} - 0 \\ & = \frac{x^3}{3} + \frac{3x^2}{2} \end{align*}

Now, we can calculate the average value by dividing the integral of f(x) over the interval [2, 5] by the length of the interval:

Average value of f(x)=15225(t2+3t)dt=1325(t2+3t)dt=13[t33+3t22]25=13(1253+752(83+6))=13(2216)=22118 \begin{align*} \text{Average value of } f(x) &= \frac{1}{5 - 2} \int_2^5 (t^2 + 3t) dt \\ & = \frac{1}{3} \int_2^5 (t^2 + 3t) dt \\ & = \frac{1}{3} \left[\frac{t^3}{3} + \frac{3t^2}{2}\right]_2^5 \\ & = \frac{1}{3} \left(\frac{125}{3} + \frac{75}{2} - \left(\frac{8}{3} + 6\right)\right) \\ & = \frac{1}{3} \left(\frac{221}{6}\right) \\ & = \frac{221}{18} \end{align*}

Therefore, the average value of f(x) over the interval [2, 5] is 22118 \frac{221}{18} .

(b) According to the Mean Value Theorem for Integrals, there exists a value c in the interval [2, 5] such that:

f(c)=average value of f(x) over [2, 5]. f'(c) = \text{average value of } f(x) \text{ over [2, 5]}.

To find c, we need to find f'(x) and set it equal to the average value obtained in part (a):

f(x)=22118 f'(x) = \frac{221}{18}

Taking the derivative of f(x) with respect to x:

f(x)=ddx(x33+3x22) f'(x) = \frac{d}{dx} \left(\frac{x^3}{3} + \frac{3x^2}{2}\right)
f(x)=x2+3x f'(x) = x^2 + 3x

Setting this equal to the average value:

x2+3x=22118 x^2 + 3x = \frac{221}{18}

We can solve this quadratic equation to find the value of x:

18x2+54x221=0 18x^2 + 54x - 221 = 0

We can either factor this quadratic or use the quadratic formula. Solving using the quadratic formula:

x=54±5424(18)(221)2(18) x = \frac{-54 \pm \sqrt{54^2 - 4(18)(-221)}}{2(18)}
x=54±17436 x = \frac{-54 \pm 174}{36}

We'll take the positive value for x:

x=54+17436 x = \frac{-54 + 174}{36}
x=12036 x = \frac{120}{36}
x=103 x = \frac{10}{3}

Therefore, according to the Mean Value Theorem for Integrals, there exists a value c=103 c = \frac{10}{3} in the interval [2, 5] such that f(c)=22118 f'(c) = \frac{221}{18} .

(c) We can verify our answer to part (b) by calculating f'(x) and the average value of f(x) over [2, 5].

Taking the derivative of f(x):

f(x)=x2+3x f'(x) = x^2 + 3x

Now, let's calculate f'(c) at c=103 c = \frac{10}{3} :

f(103)=(103)2+3(103)=1009+909=1909 f'\left(\frac{10}{3}\right) = \left(\frac{10}{3}\right)^2 + 3\left(\frac{10}{3}\right) = \frac{100}{9} + \frac{90}{9} = \frac{190}{9}

Comparing this value with the average value obtained in part (a), f(c)=22118 f'(c) = \frac{221}{18} , we can see that they are equal.

Therefore, our answer is verified.