Post

Created by @nathanedwards
 at November 3rd 2023, 5:25:57 pm.

AP Calculus AB Exam Question:

A curve is defined by the equation:

y=3x24x+1y = 3x^2 - 4x + 1

a) Determine the length of the curve between x=0x = 0 and x=2x = 2. Show all calculations and provide the exact answer.

b) Find the length of the curve between x=1x = -1 and x=3x = 3. Give the answer to three decimal places.

Answer:

a) To find the length of the curve given by the equation, we will use the formula for the length of a curve:

L=ab1+(dydx)2dxL = \int_a^b \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx

where dydx\frac{dy}{dx} is the derivative of yy with respect to xx, and aa and bb are the two endpoints of the curve.

First, let's find dydx\frac{dy}{dx} by taking the derivative of yy with respect to xx:

dydx=ddx(3x24x+1)=6x4\frac{dy}{dx} = \frac{d}{dx} \left(3x^2 - 4x + 1\right) = 6x - 4

Now, we can substitute this expression into the formula for the length of the curve:

L=021+(6x4)2dxL = \int_0^2 \sqrt{1 + \left(6x - 4\right)^2} dx

Next, we simplify the integrand by expanding the square:

L=021+36x248x+16dx=0236x248x+17dxL = \int_0^2 \sqrt{1 + 36x^2 - 48x + 16} dx = \int_0^2 \sqrt{36x^2 - 48x + 17} dx

To evaluate this integral, we can use a trigonometric substitution.

Let u=6x4u = 6x - 4, so du=6dxdu = 6dx and dx=du6dx = \frac{du}{6}.

When x=0x = 0, u=4u = -4, and when x=2x = 2, u=8u = 8.

Substituting into the integral, we have:

L=48u2+17du6L = \int_{-4}^8 \sqrt{u^2 + 17} \frac{du}{6}

Next, we simplify the integral:

L=1648u2+17duL = \frac{1}{6} \int_{-4}^8 \sqrt{u^2 + 17} du

This integral can be evaluated by using the trigonometric substitution u=52tan(θ)u = 5\sqrt{2} \tan(\theta).

Applying this substitution, we get:

du=52sec2(θ)dθdu = 5\sqrt{2} \sec^2(\theta) d\theta

and

u2+17=50tan2(θ)+17\sqrt{u^2 + 17} = \sqrt{50 \tan^2(\theta) + 17}

Simplifying further:

L=164850tan2(θ)+1752sec2(θ)dθL = \frac{1}{6} \int_{-4}^8 \sqrt{50 \tan^2(\theta) + 17} \cdot 5\sqrt{2} \sec^2(\theta) d\theta
L=52648sec3(θ)dθL = \frac{5\sqrt{2}}{6}\int_{-4}^8 \sec^3(\theta) d\theta

Using the reduction formula for integrating secn(θ)\sec^n(\theta), where nn is an odd number:

secn(θ)dθ=1n1secn2(θ)tan(θ)+n2n1secn2(θ)dθ\int \sec^n(\theta) d\theta = \frac{1}{n-1}\sec^{n-2}(\theta)\tan(\theta) + \frac{n-2}{n-1}\int \sec^{n-2}(\theta) d\theta

Using this reduction formula with n=3n=3:

sec3(θ)dθ=12sec(θ)tan(θ)+12sec(θ)dθ\int \sec^3(\theta) d\theta = \frac{1}{2}\sec(\theta)\tan(\theta) + \frac{1}{2}\int \sec(\theta) d\theta

Now, we can substitute back and evaluate the definite integral:

L=526[12sec(θ)tan(θ)+12lnsec(θ)+tan(θ)]48L = \frac{5\sqrt{2}}{6}\left[ \frac{1}{2}\sec(\theta)\tan(\theta) + \frac{1}{2}\ln|\sec(\theta) + \tan(\theta)| \right]_{-4}^8

Using the limits of integration, we find:

sec(θ)=524\sec(\theta) = \frac{5\sqrt{2}}{4}
tan(θ)=324\tan(\theta) = \frac{3\sqrt{2}}{4}
lnsec(θ)+tan(θ)=ln(724)\ln|\sec(\theta) + \tan(\theta)| = \ln\left(\frac{7\sqrt{2}}{4}\right)

Substituting these values back into the expression:

L=526[12524324+12ln(724)]L = \frac{5\sqrt{2}}{6}\left[ \frac{1}{2}\frac{5\sqrt{2}}{4}\frac{3\sqrt{2}}{4} + \frac{1}{2}\ln\left(\frac{7\sqrt{2}}{4}\right) \right]
L=256+56ln(724)10.498L = \frac{25}{6} + \frac{5}{6}\ln\left(\frac{7\sqrt{2}}{4}\right) \approx 10.498

Therefore, the length of the curve between x=0x = 0 and x=2x = 2 is approximately 10.498 units.

b) We can use the same formula for the length of the curve to find the length between x=1x=-1 and x=3x=3:

L=131+(6x4)2dxL = \int_{-1}^3 \sqrt{1 + \left(6x - 4\right)^2} dx

Following the same steps as in part a, we obtain:

L=526[12324924+12ln(1124)]L = \frac{5\sqrt{2}}{6}\left[ \frac{1}{2}\frac{3\sqrt{2}}{4}\frac{9\sqrt{2}}{4} + \frac{1}{2}\ln\left(\frac{11\sqrt{2}}{4}\right) \right]
L=13532+56ln(1124)8.025L = \frac{135}{32} + \frac{5}{6}\ln\left(\frac{11\sqrt{2}}{4}\right) \approx 8.025

Therefore, the length of the curve between x=1x = -1 and x=3x = 3 is approximately 8.025 units.