Post

Created by @nathanedwards
 at November 1st 2023, 10:56:18 pm.

Question:

Let f(x)f(x) and g(u)g(u) be differentiable functions. Given that f(x)=4x32x2+5x7f(x) = 4x^3 - 2x^2 + 5x - 7 and g(u)=3u+2g(u) = \sqrt{3u + 2}, find the derivative of h(x)=g[f(x)]h(x) = g[f(x)] using the chain rule.

Answer:

To find the derivative of h(x)h(x), we can use the chain rule. The chain rule states that if we have a composite function h(x)=g[f(x)]h(x) = g[f(x)], where f(x)f(x) represents the inner function and g(u)g(u) represents the outer function, then the derivative is given by:

dhdx=dgdudfdx\frac{dh}{dx} = \frac{dg}{du} \cdot \frac{df}{dx}

First, we need to find dgdu\frac{dg}{du} and dfdx\frac{df}{dx}.

Given g(u)=3u+2g(u) = \sqrt{3u + 2}, let's find dgdu\frac{dg}{du}:

dgdu=ddu(3u+2)\frac{dg}{du} = \frac{d}{du}\left(\sqrt{3u + 2}\right)

Using the power rule and the chain rule, we have:

dgdu=123u+2ddu(3u+2)\frac{dg}{du} = \frac{1}{2\sqrt{3u + 2}} \cdot \frac{d}{du}(3u+2)

Simplifying the derivative of 3u+23u+2, we get:

dgdu=123u+23\frac{dg}{du} = \frac{1}{2\sqrt{3u + 2}} \cdot 3
dgdu=323u+2\frac{dg}{du} = \frac{3}{2\sqrt{3u + 2}}

Now, let's find dfdx\frac{df}{dx}:

Given f(x)=4x32x2+5x7f(x) = 4x^3 - 2x^2 + 5x - 7, we simply need to differentiate f(x)f(x) using the power rule:

dfdx=12x24x+5\frac{df}{dx} = 12x^2 - 4x + 5

Now that we have both dgdu\frac{dg}{du} and dfdx\frac{df}{dx}, we can find dhdx\frac{dh}{dx}:

dhdx=dgdudfdx\frac{dh}{dx} = \frac{dg}{du} \cdot \frac{df}{dx}

Plugging in the values we found earlier:

dhdx=(323u+2)(12x24x+5)\frac{dh}{dx} = \left(\frac{3}{2\sqrt{3u + 2}}\right) \cdot (12x^2 - 4x + 5)

However, we need to substitute uu back in terms of xx using the inner function f(x)f(x):

u=f(x)=4x32x2+5x7u = f(x) = 4x^3 - 2x^2 + 5x - 7

Substituting this back into the equation:

dhdx=(323(4x32x2+5x7)+2)(12x24x+5)\frac{dh}{dx} = \left(\frac{3}{2\sqrt{3(4x^3 - 2x^2 + 5x - 7) + 2}}\right) \cdot (12x^2 - 4x + 5)

Simplifying further gives us the final derivative expression:

dhdx=3(12x24x+5)212x36x2+15x16\frac{dh}{dx} = \frac{3(12x^2 - 4x + 5)}{2\sqrt{12x^3 - 6x^2 + 15x -16}}

Therefore, the derivative of h(x)=g[f(x)]h(x) = g[f(x)] with respect to xx is 3(12x24x+5)212x36x2+15x16\frac{3(12x^2 - 4x + 5)}{2\sqrt{12x^3 - 6x^2 + 15x -16}}.