Question:
Let the function
(a) Find
(b) Using
Answer:
(a) Finding the antiderivative:
To find
Now, we can use partial fractions to break down the expression. Recall that for an expression of the form
Multiplying through by the common denominator, we have:
Expanding the equation and collecting like terms:
Since the coefficients of
\begin{align*} A+B &= 0 \ 3A + B &= 1 \end{align*}
Solving this system, we find
Now, let's integrate
\begin{align*} F(x) &= \int f(x) ,dx \ &= \int \left(\frac{-\frac{1}{2}}{x+1} + \frac{\frac{1}{2}}{x+3}\right) ,dx \ &= -\frac{1}{2}\int \frac{1}{x+1} ,dx + \frac{1}{2}\int \frac{1}{x+3} ,dx \end{align*}
Using the property of logarithmic functions, we can rewrite this as:
where
(b) Evaluating the definite integral:
To evaluate the definite integral, we substitute the limits of integration into the antiderivative
\begin{align*} \int_{0}^{1} \frac{1}{x^2 + 4x + 3} ,dx &= F(1) - F(0) \ &= \left(-\frac{1}{2} \ln|1+1| + \frac{1}{2} \ln|1+3| + C\right) - \left(-\frac{1}{2} \ln|0+1| + \frac{1}{2} \ln|0+3| + C\right) \ &= -\frac{1}{2} \ln 2 + \frac{1}{2} \ln 4 - \left(-\frac{1}{2} \ln 1 + \frac{1}{2} \ln 3\right) \ &= -\frac{1}{2} \ln 2 + \frac{1}{2} \ln 4 - \left(0 + \frac{1}{2} \ln 3\right) \ &= -\frac{1}{2} \ln 2 + \frac{1}{2} \ln 4 - \frac{1}{2} \ln 3 \ &= -\frac{1}{2} \ln \left(\frac{2 \cdot 3}{\sqrt{3}}\right) + \frac{1}{2} \ln 4 \ &= -\frac{1}{2} \ln \left(\frac{6}{\sqrt{3}}\right) + \frac{1}{2} \ln 4 \ &= -\frac{1}{2} \ln \left(2\sqrt{2}\right) + \frac{1}{2} \ln 4 \ &= -\frac{1}{2} \left(\ln 2 + \ln\sqrt{2}\right) + \frac{1}{2} \ln 4 \ &= -\frac{1}{2} \ln 2 - \frac{1}{2} \ln 2 + \frac{1}{2} \ln 4 \ &= -\ln 2 + \frac{1}{2} \ln 4 \ &= \ln \sqrt{\frac{4}{2}} \ &= \ln 2 \ &= \boxed{\ln 2} \end{align*}
Therefore, the value of the definite integral
(c) Using basic antiderivatives:
The integral
We observe that the denominator can be factored as
Using partial fractions, we can decompose the integrand as:
Multiplying through by the common denominator, we have:
Solving this equation, we find
Substituting back
where
Comparing this result with our antiderivative
To find the exact value of the definite integral using basic antiderivatives, we substitute the limits of integration into the antiderivative
\begin{align*} -\frac{1}{2}\ln|1+1| + \frac{1}{2}\ln|1+3| - \left(-\frac{1}{2}\ln|0+1| + \frac{1}{2}\ln|0+3|\right) &= -\frac{1}{2}\ln 2 + \frac{1}{2}\ln 4 - \left(0 + \frac{1}{2}\ln 3\right) \ &= -\frac{1}{2}\ln 2 + \frac{1}{2}\ln 4 - \frac{1}{2}\ln 3 \ &= -\frac{1}{2}\ln\left(\frac{2\cdot3}{\sqrt 3}\right) + \frac{1}{2}\ln 4 \ &= -\frac{1}{2}\ln \sqrt{2} + \frac{1}{2}\ln 4 \ &= -\ln 2 + \frac{1}{2}\ln 4 \ &= \ln \left(\frac{4}{2}\right) \ &= \ln 2 \ &= \boxed{\ln 2} \end{align*}
Therefore, the value of the definite integral